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Preface

The present publication contains a special collection of research and
review articles on deformations of surface singularities, that put together
serve as an introductory survey of results and methods of the theory, as
well as open problems, important examples and connections to other areas
of mathematics, such as the theory of Stein fillings and symplectic geometry.

We envision this volume as a guide for all those already doing or wishing
to do research in this area, and thus it is intended to be especially useful
for PhD students.

1. A Short Introduction in Deformation Theory

Deformation theory appeared as the investigation of how complex struc-
tures may vary on a fixed compact, smooth manifold. In his famous paper
“Theorie der abelschen Funktionen” [16], published in 1857, Riemann al-
ready mentioned the 3g − 3 moduli determining the complex structure of
an algebraic curve (‘Riemann surface’) of genus g ≥ 2.

Looking for an analogous description in higher dimensions, Kodaira and
Spencer started developing the machinery of what is called deformation
theory today [12]. Because of the fact that (beginning in dimension two)
a good moduli space does not always exist, they used a modified weaker
concept: the versal (or semi-universal) deformation f : X → S of a mani-
foldX0 = f−1(0) (0 ∈ S). This space parametrizes all possible deformations
(but even the minimal one no longer provides a one-to-one correspondence
between fibers and complex structures).

Kodaira and Spencer showed the existence of the mini-versal deforma-
tion space (‘universal versal deformation space’), under a certain cohomo-
logical vanishing. Later Kuranishi [14] completed their work by allowing
singular base spaces and eliminating the cohomological assumption.

In a similar manner, we may regard deformations of germs of analytic
spaces (or equivalently, deformations of local, analytic C-algebras) that are
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not necessarily smooth: that are ‘singularities’. In this case one defines
the possible deformation spaces, deformation functors, and the notion of
mini-versal deformations as well. It is not hard to see that the mini-versal
deformation (if it exists) is uniquely determined; moreover, in the case of
complete intersections the base space is smooth. However, in general, the
base space and the structure of the versal family might become extremely
complicated.

The existence of the analytic mini-versal space was established (under
some assumptions) by Schlessinger [18]. For normal surface singularities the
existence-problem was completely solved by Tjurina, and the most general
case by Grauert [6] in 1972.

Schlessinger’s method leads to the construction of the versal deforma-
tions, and useful criterion to verify versality. The reader might consult
for more information Artin’s Lecture notes [4], Palamodov’s large introduc-
tion [15], or J. Stevens Thesis [21] and his recent Springer LNM–book [23].

Deformation theory of normal surface singularities in the last decades
witnessed an extraordinary development in spite of being one of the most
difficult subjects of singularity theory, as it is based on hard machinery from
algebraic geometry, sheaf-cohomology and algebraic topology.

As the singularity is encoded in the construction of the mini-versal
deformation space (and/or its base-space), this space contains important
information about the given germ and is a crucial source of numerical
invariants. Its most important two ingredients are the tangent space and
obstruction space, which became the subject of intense mathematical study
in the last years. Let us list some key examples.

Riemenschneider [17] and Arndt [3] initiated the description of cyclic
quotient singularities, particularly of their tangent space. Its construction,
as well as of the obstruction space, was completed by Christophersen [5] and
Behnke. We emphasize that already in this particular case the deformation
space is not smooth, and it contains many irreducible components. The
fact that in the above construction one indeed obtains all the components
of the deformation space was verified by J. Stevens [22] based on the article
of Kollár and Shepherd–Barron [13].

The next steps were again seriously obstructed: it proved to be very hard
to generalize the results valid for cyclic quotient singularities. Nevertheless,
D. van Straten and T. de Jong using new ideas obtained positive results in
the direction of (the still open) Kollár Conjecture (targeting the description
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of the base space of the mini-versal deformation) in case of rational quadru-
ple singularities [7] and minimal rational singularities [8]. Moreover, in a
series of articles they developed a whole ‘deformation theory of non-isolated
singularities’ [9, 10]. Their theory was successfully used for many families
of normal surface singularities, e.g. for ‘sandwiched’ and rational singulari-
ties, applied to their projection in (C3, 0) [11]. Their article [11] describes
the smoothings (i.e. those deformations which provide smooth deformation
fibers) of sandwiched singularities,—an important family with testing char-
acteristics for any new theory, introduced by M. Spivakovsky [19, 20].

Recently, smoothings of rational and sandwiched singularities became a
focus of interest in Contact Geometry and Stein/symplectic fillings as well:
they provide the most important models of the theory. Indeed, local Milnor
fibers are particular Stein fillings of the corresponding singularity links.

Simultaneously, Teissier (and his school), Laufer and Wahl developed
the theory of (‘very weak’, ‘weak’, ‘strong’) simultaneous resolutions, where
deformation and resolution theory are combined (see e.g. [24]). This led to
the development of equisingularity theory and its connections with commu-
tative algebra (integral closures).

There is another class of singularities which is in the mainstream of the
deformation research: those provided by toric geometry. Toric geometry is
that part of algebraic geometry which identifies its object by combinatorial
construction (etc. by integral polyhedrons, or rational fans), and targets
the computation of all topological/algebraic/sheaf-theoretical invariants via
combinatorics. Their deformation theory was developed by K. Altmann,
(see e.g. [1], or [2]).

2. The ‘Deformation Theory Conference’ at Budapest

In the period 10–12 October, 2008, the Alfréd Rényi Institute of Math-
ematics (Hungarian Academy of Sciences in Budapest, Hungary), orga-
nized a meeting titled Deformation of Surfaces (organizers: A. Némethi
and Á. Szilárd.)

At the meeting experts of this area—Klaus Altmann, Jan Christo-
phersen, Helmut Hamm, Theo de Jong, Monique Lejeune-Jalabert, Mark
Spivakovsky, Jan Stevens, Duco van Straten—gave lectures explaining the
classical theory and constructions complemented with presentation of re-
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cent developments and open questions. A special emphasis was put on key
classes of singularities such as rational, sandwiched and minimal rational.

Moreover, the local theory of surface singularities was related with the
theory of affine surfaces and their deformations in the talk of M. Zaidenberg.
(For a list of guiding open problems of Zaidenberg see [25].)

The talks given were:

D. van Straten: Introduction (How should one think about deformation
theory?).

K. Altmann: Introduction to the deformation theory of toric singular-
ities.

K. Altmann: The smoothings of certain toric singularities described
by quivers.

J. Stevens: Versal deformation of cyclic quotient singularities.

J. Christophersen: Deformations of Stanley-Reisner surfaces.

M. Lejeune-Jalabert: Integral closure of ideals and equisingularity.

M. Spivakovsky: Equisingular deformations of sandwiched surface
singularities.

T. de Jong & D. van Straten: Deformation of minimal and sand-
wiched singularities I. and II.

J. Stevens: Open problems, interesting questions regarding deforma-
tions of surface singularities.

H. A. Hamm: Equisingularity of curves on surfaces.

M. Zaidenberg: Deformations of acyclic surfaces and of C∗-actions.
The meeting was an absolute success with 34 foreign participants, in-

cluding a large number of PhD students. It was the great interest shown by
the audience because of which the idea of a volume collecting research and
review articles on deformations of surface singularities, that put together
would serve as a comprehensive survey of the key results and methods in
this area known today, as well as open problems, important examples and
connections to other areas of mathematics was conceived.

Thus the aim of the present volume is to collect material that will help
mathematicians already working or wishing to work in this area to deepen
their insight and eliminate the technical barriers in this learning process.
This also is supported by review articles providing some global picture and
abundance of examples.
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Additionally, we introduce some material which emphasizes the newly
found relationship with the theory of Stein fillings and Symplectic geometry
(work of Eliashberg, Ono, Ohta, Etnyre, Lisca, Stipsicz). This links two
main theories of mathematics: low dimensional topology with algebraic
geometry.
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Negative Deformations of Toric Singularities

that are Smooth in Codimension Two

KLAUS ALTMANN and LARS KASTNER

Given a cone σ ⊆ NR with smooth two-dimensional faces and, moreover, an
element R ∈ σ∨ ∩M of the dual lattice, we describe the part of the versal defor-
mation of the associated toric variety TV(σ) that is built from the deformation
parameters of multidegree R.

The base space is (the germ of) an affine scheme M̄ that reflects certain
possibilities of splitting Q := σ ∩ [R = 1] into Minkowski summands.

1. Introduction

1.1. The entire deformation theory of an isolated singularity is encoded in
its so-called versal deformation. For complete intersection singularities this
is a family over a smooth base space obtained by certain perturbations of
the defining equations.

As soon as we leave this class of singularities, the structure of the family,
and sometimes even the base space, will be more complicated. It is well
known that the base space may consist of several components or may be
non-reduced.

1.2. Let M , N be two mutually dual, free abelian groups of finite rank.
Then affine toric varieties are constructed from rational, polyhedral cones
σ ⊆ NR := N ⊗ R: One takes the dual cone

σ∨ :=
{
r ∈MR | 〈a, r〉 ≥ 0 for each a ∈ σ

}
,
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and Y := TV(σ) is defined as the spectrum of the semigroup algebra
C[σ∨∩M ]. In particular, the equations of Y are induced from linear relations
between lattice points of σ∨ ⊆ MR. As usual for all other toric objects
or notions, the toric deformation theory also comes with an M -grading.
In particular, for any R ∈ M , we might speak of infinitesimal or versal
deformations of degree −R.

With the latter, we mean the following: The vector space T 1 of infinites-
imal deformations serves as the ambient space of the germ of the versal base
space. Hence it makes sense to intersect it with the linear space obtained as
the annihilator of the T 1 coordinates of degree 
= R. Equivalently, the ver-
sal deformation of degree −R can be understood as the maximal extension
of the infinitesimal deformations in degree −R.

1.3. For investigating versal deformation spaces, Gorenstein singularities
are the easiest examples beyond complete intersections. It is a helpful
coincidence that the Gorenstein property has a very nice description in the
toric context – the cone σ should just be spanned by a lattice polytope Q
sitting in an affine hyperplane [R∗ = 1] of height one. Note that R∗ ∈ M
equals the degree of the volume form. This leads to the investigation of the
deformation theory of toric Gorenstein singularities in [1] – the interesting
deformations were contained in degree −R∗.

The present paper is meant as a generalization of this approach. We
discard the Gorenstein assumption. For Y we just assume smoothness in
codimension two (as was already done in the Gorenstein case), and for R
we restrict to the case of a primitive R ∈ σ∨ ∩M . Otherwise, one would
leave the toric framework, cf. [2].

While the main ideas work along the lines of [1], we try to keep the
paper as self-contained as possible.

1.4. The main tool to describe our results is the notion of Minkowski sums.

Definition. For two polyhedra P, P ′ ⊆ Rn we define their Minkowski sum
as the polytope P + P ′ := {p + p′ | p ∈ P , p′ ∈ P ′}. Obviously, this
notion also makes sense for translation classes of polytopes. For instance,
each polyhedron Q is the Minkowski sum of a compact polytope and the
so-called tail cone Q∞.

Let us fix a primitive element R of σ∨∩M and intersect the cone σ with
the hyperplane defined by [R = 1]. This intersection defines a polyhedron
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named Q := Q(R). For our investigations, this Q plays a similar role as the
Q in the Gorenstein case. However, in the present paper, it neither needs to
be a lattice polyhedron, nor compact. If ai is one of the primitive generators
of σ, then it leads to a lattice/non-lattice vertex of Q or to a generating ray
of its tail cone Q∞ iff 〈ai, R〉 = 1, ≥ 2, or = 0, respectively.

Following the Gorenstein case we will construct a “moduli space” C(Q)
of Minkowski summands of multiples of Q – but in the present paper, we
have to take care of their possible tail cones as well as the non-lattice vertices
of Q. Attaching each Minkowski summand at the point that represents
it in C(Q) yields the so-called tautological cone C̃(Q) together with a
projection onto C(Q). It can be seen as the universal Minkowski summand
of Q. Indeed, applying the functor that makes toric varieties from cones
will provide the main step toward constructing the versal base space of
Y = TV(σ) in degree −R.

1.5. For a given polyhedron Q ⊆ Rn we begin in Sect. 2 by presenting an
affine scheme M̄. It is related to C(Q) and describes the possibilities of
splitting Q into Minkowski summands. In Sect. 3 we study the tautological
cone C̃(Q). Applied to Q(R), this leads in Sect. 4 to the construction of
a flat family over M̄ with Y as special fiber. Now we can state the main
theorem (6.1) of this paper.

Theorem. The family X̄ ×S̄M → M̄ (cf. 4.1) with base space M̄ is the
versal deformation of Y of degree −R,

i.e. the Kodaira–Spencer map is an isomorphism in degree −R (Sect. 5)
and the obstruction map is injective (Sect. 6). Based on this an interesting
question arises, namely whether it is possible to construct the part of the
versal deformation of Y with negative degrees by repeatedly applying the
principles of this paper.

The last section starts with describing the situation for dimY = 3 (in
Theorem 7.1) and then continues with an explicit example. It shows how
to compute the family using Singular (cf. [6]) and Normaliz (cf. [5]).

1.6. Acknowledgement. We would like to thank the anonymous referee
for the careful reading, for checking the calculations, and for the valuable
hints.
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2. The Base Space

2.1. Let σ = 〈a1, . . . , aM 〉 ⊆ NR be a cone such that the two-dimensional
faces 〈aj , ak〉 < σ are smooth (i.e. a1, . . . , aM ∈ N are primitive, and {aj , ak}
could be extended to a Z-basis ofN). Let R ∈ σ∨∩M be a primitive element.
Then one can define:

Definition. Let R ∈ σ∨ ∩ M be primitive. We define the affine space
A := [R = 1] :=

{
a ∈ NR | 〈a,R〉 = 1

}
⊆ NR with lattice L := A ∩ N .

It contains the polyhedron Q := Q(R) := σ ∩ [R = 1] with tail cone
Q∞ = σ ∩ [R = 0]. Note that Q∞ = 0 if and only if R ∈ intσ∨.

Note that we can recover σ as σ = R≥0 · (Q, 1) = R≥0 · (Q, 1)∪ (Q∞, 0).
The vertices of Q are vi = ai/〈ai, R〉 for those fundamental generators ai ∈ σ
with 〈ai, R〉 ≥ 1; they belong to L iff 〈ai, R〉 = 1. We will see that Y is rigid
in degree −R unless Q has at least one such L-vertex. Assuming this, we
fix one of the L-vertices of Q to be the origin.

2.2. Denote by d1, . . . , dN ∈ NQ the compact edges of Q after choosing
some orientation of each of them. Calling edges that meet in a common
non-lattice vertex of Q “connected” implies that the set {d1, . . . , dN} may
be uniquely decomposed into components according to this notion.

Definition. For every compact 2-face ε < Q we can define the sign vector
ε = (ε1, . . . , εN ) ∈ {0,±1}N by

εi :=

{
±1 if di is an edge of ε

0 otherwise

such that the oriented edges εi · di fit into a cycle along the boundary of ε.
This determines ε up to sign and we choose one of both possibilities. In
particular, we have

∑
i εid

i = 0 if ε < Q is a compact 2-face.

Now we define the vector space V (Q) ⊆ RN by

V (Q) :=

{
(t1, . . . , tN )

∣∣∣ ∑
i

tiεid
i = 0 for every compact 2-face ε < Q, and

ti = tj if di, dj contain a common non-lattice vertex of Q

}
.
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To simplify notation we are going to use V := V (Q). For each component
of edges there is a well defined associated coordinate function V → R.
Now, C(Q) := V ∩ RN

≥0 is a rational, polyhedral cone in V , and its points
correspond to certain Minkowski summands of positive multiples of Q:

2.3. Lemma. Each point t ∈ C(Q) define a Minkowski summand of a
positive multiple of Q; its i-th compact edge equals tid

i. This yields a
bijection between C(Q) and the set of all Minkowski summands (of positive
multiples of Q) that change components of edges just by a scalar.

Proof. For an Element t ∈ C(Q) the corresponding summand Qt is built
by the edges ti ·di as follows: Each vertex v of Q can be reached from 0 ∈ Q
by some walk along the compact edges di of Q. We obtain

v =

N∑
i=1

λid
i for some λ = (λ1, . . . , λN ), λi ∈ Z.

Now given an element t ∈ C(Q), we may define the corresponding vertex vt
by

vt :=
N∑
i=1

tiλid
i,

and the linear equations defining V ensure that this definition does not
depend on the particular path from v to 0 through the compact part of the 1-
skeleton of Q. We define the Minkowski summand by Qt := conv {vt}+Q∞.

2.4. Now, we define a higher degree analogous to the linear equations
defining V :

Definition. For each compact 2-face ε < Q, and for each integer k ≥ 1 we
define the vector valued polynomial

gε,k(t) :=
N∑
i=1

tki εid
i.

Using coordinates of A, the di turn into scalars, thus the gε,k(t) turn into
regular polynomials; for each pair (ε, k) we will get two linearly independent
ones. Since

V ⊥ = span{[〈ε1d1, c〉, . . . , 〈εNdN , c〉
]
| ε < Q is a compact 2-face, c ∈ A∗;

[0, . . . , 1i, . . . ,−1j , . . . , 0] | di, dj have a common non-lattice Q-vertex},
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they (together with ti − tj for di, dj sharing a common non-lattice vertex)
can be written as

gd,k(t) :=
N∑
i=1

dit
k
i

with d ∈ V ⊥ ∩ ZN and k ∈ N. We thus may define the ideal

J := (gε,k)ε,k≥1 + (ti − tj | di, dj share a common non-lattice vertex)

=
(
gd,k(t) | d ∈ V ⊥ ∩ ZN

)
⊆ C[t]

which defines an affine closed subscheme

M := SpecC[t]
/
J ⊆ VC ⊆ CN .

Denote by � the canonical projection

� : CN � CN/
C · (1, . . . , 1) .

On the level of regular functions this corresponds to the inclusion C[ti− tj |
1 ≤ i, j ≤ N ] ⊆ C[t]. Note that the vector 1 = (1, . . . , 1) ∈ C(Q) ⊆ V
encodes Q as a Minkowski summand of itself.

2.5. Theorem. (1) J is generated by polynomials from C[ti − tj ], i.e.

M = �−1(M̄) for the affine closed subscheme M̄ ⊆ VC
/
C · 1 ⊆ CN/

C · 1
defined by J ∩ C[ti − tj ].

(2) J ⊆ C[t1, . . . , tN ] is the smallest ideal that meets property (1) and,
on the other hand, contains the “toric equations”

N∏
i=1

t
d+i
i −

N∏
i=1

t
d−i
i with d ∈ V ⊥ ∩ ZN .

(For an integer h we denote

h+ :=

{
h if h ≥ 0

0 otherwise;
h− :=

{
0 if h ≥ 0

−h otherwise.
)

The proof is similar to the one of [1, Theorem (2.4)].
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3. The Tautological Cone

3.1. While C(Q) ⊆ V (Q) were built to describe the base space, we turn now
to the cone that will eventually lead to the total space of our deformation.

Definition. The tautological cone C̃(Q) ⊆ A× V is defined as

C̃(Q) :=
{
(v, t) | t ∈ C(Q); v ∈ Qt

}
;

it is generated by the pairs
(
vj
tl
, tl
)

and (vk, 0) where tl, vj , and vk run

through the generators of C(Q), vertices of Q, and generators of Q∞,
respectively.

Since σ = Cone (Q) ⊆ A × R = NR, we obtain a fiber product diagram
of rational polyhedral cones:

[σ ⊆ A× R] �
� i ��

pr
R

����

[
C̃(Q) ⊆ A× V

]
prV
����

R≥0
� � ·1 ��

[
C(Q) ⊆ V

]
The three cones σ ⊆ A×R, C̃(Q) ⊆ A× V and C(Q) ⊆ V define affine

toric varieties called Y,X and S, respectively. The corresponding rings of
regular functions are

A(Y ) = C
[
σ∨ ∩ (L∗ × Z)

]
,

A(X) = C
[
C̃(Q)∨ ∩ M̃

]
, M̃ := L∗ × V ∗

Z

A(S) = C
[
C(Q)∨ ∩ V ∗

Z

]
,

and we obtain the following diagram:

Y � � i ��

��

X

π
��

C � � �� S.

Unfortunately, this diagram does not need to be a fiber product diagram as
we will explain in (3.6).
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3.2. To each non-trivial c ∈ (Q∞)∨ we associate a vertex v(c) ∈ Q and a
number η0(c) ∈ R meeting the properties

〈Q, c〉+ η0(c) ≥ 0 and〈
v(c), c

〉
+ η0(c) = 0.

For c = 0 we define v(0) := 0 ∈ L and η0(0) := 0 ∈ R.

Remark. (1) With respect to Q, c 
= 0 is the inner normal vector of the
affine supporting hyperplane

[
〈•, c〉+η0(c) = 0

]
through v(c). In particular,

η0(c) is uniquely determined, while v(c) is not.

(2) Since 0 ∈ Q, the η0(c) are non-negative.

Moreover, if c ∈ (Q∞)∨ ∩ L∗, we denote by η∗0(c) the smallest integer
greater than or equal to η0(c), i.e. η

∗
0(c) =

⌈
η0(c)

⌉
. Then

σ∨ = {[c, η0(c)] | c ∈ (Q∞)∨}+ R≥0 · [0, 1]

and
σ∨ ∩M = {[c, η∗0(c)] | c ∈ L∗ ∩ (Q∞)∨}+ N · [0, 1].

Note that [0, 1] equals the element R ∈ M fixed in the beginning. In
particular we can choose a generating set E ⊆ σ∨ ∩M as some

E = {[0, 1], [c1, η∗0(c1)] , . . . , [cw, η∗0(cw)]}.
3.3. Thinking of C(Q) as a cone in RN instead of V allows dualizing the
equation C(Q) = RN

≥0 ∩ V to get C(Q)∨ = RN
≥0 + V ⊥. Hence, for C(Q) as

a cone in V we obtain

C(Q)∨ = RN
≥0 + V ⊥/

V ⊥ = im [RN
≥0 −→ V ∗].

The surjection RN
≥0 � C(Q)∨ induces a map NN −→ C(Q)∨ ∩ V ∗

Z which
does not need to be surjective at all. This leads to the following definition:

Definition. On V ∗
Z we introduce a partial ordering “≥” by

η ≥ η′ ⇐⇒ η − η′ ∈ im
[
NN → V ∗

Z

]
⊆ C(Q)∨ ∩ V ∗

Z .

On the geometric level, the non-saturated semigroup im
[
NN → V ∗

Z

]
⊆

C(Q)∨ ∩ V ∗
Z corresponds to the scheme theoretical image S̄ of p : S → CN ,
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and S → S̄ is its normalization, cf. (4.2). The equations of S̄ ⊆ CN are
collected in the kernel of

C[t1, . . . , tN ] = C
[
NN
] ϕ−→ C

[
C(Q)∨ ∩ V ∗

Z

]
⊆ C[V ∗

Z ],

and it is easy to see that

kerϕ =

( N∏
i=1

t
d+i
i −

N∏
i=1

t
d−i
i

∣∣∣ d ∈ ZN ∩ V ⊥
)

is generated by the toric equations from (2.5).

3.4. To deal with the dual space V ∗ the following point of view will
be useful: In the Gorenstein case we described its elements by using the
surjection RN → V ∗. In particular, an element η ∈ V ∗ was given by
coordinates ηi corresponding to the edges di of Q. Now, in the general
case, the set of edges of Q splits into several components, cf. (2.2). For each
such component, not the single coordinates but only their sum along the
entire component is well defined. However, this does not affect that the
total summation map RN → R factors through V ∗ → R. It will still be
denoted as η �→∑i ηi.

Definition. (1) For c ∈ (Q∞)∨ choose some path from 0 ∈ Q to v(c) ∈ Q
through the 1-skeleton of Q and let λc := (λc

1, . . . , λ
c
N ) ∈ ZN be the vector

counting how often (and in which direction) we went through each particular
edge. Then

η(c) :=
[
− λc

1〈d1, c〉, . . . ,−λc
N 〈dN , c〉

]
∈ QN

defines an element η(c) ∈ V ∗ not depending on the special choice of the
path λc.

(2) Let v ∈ Q be a vertex not contained in the lattice L. Then we denote
by e[v] ∈ V ∗

Z the element represented by [0, . . . , 0, 1i, 0, . . . , 0] ∈ ZN for some
compact edge di containing v, i.e. e[v] yields the entry ti of t ∈ V . (Note
that e[v] does not depend on the choice of di.)

(3) For c ∈ (Q∞)∨∩L∗ denote η∗(c) := η(c)+
(
η∗0(c)−η0(c)

)
·e
[
v(c)
]
∈

V ∗. (If v(c) ∈ L, then η∗0(c) = η0(c) implies that we do not need e
[
v(c)
]
in

that case.)

Here are the essential properties of η∗(c):
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3.5. Lemma. Let c ∈ (Q∞)∨ ∩ L∗. Then
(i) η∗(c) ∈ im[NN → V ∗

Z ] ⊆ C(Q)∨ ∩ V ∗
Z , and this element equals η(c) if

and only if
〈
v(c), c

〉
∈ Z (in particular, if v(c) ∈ L).

(ii) For cν ∈ L∗∩(Q∞)∨ and gν ∈ N we have
∑

ν gνη
∗(cν) ≥ η∗(

∑
ν gνc

ν)
in the sense of (3.3).

(iii)
∑N

i=1 ηi(c) = η0(c) and
∑N

i=1 η
∗
i (c) = η∗0(c).

Proof. (iii) By definition of λc we have
∑N

i=1 λ
c
id

i = v(c). In particular:

N∑
i=1

η∗i (c) =
N∑
i=1

ηi(c) +

N∑
i=1

(
η∗0(c)− η0(c)

)
· ei
[
v(c)
]

=

(
−

N∑
i=1

〈λc
id

i, c〉
)
+ η∗0(c)− η0(c)

= −
〈
v(c), c

〉
+ η∗0(c)− η0(c) = η0(c) + η∗0(c)− η0(c) = η∗0(c).

The equality
∑N

i=1 ηi(c) = η0(c) follows from the previous argument by
leaving out the e

[
v(c)
]
-terms.

(i) Now, for c ∈ L∗ ∩ (Q∞)∨, we will show that η∗(c) ∈ V ∗ can be rep-

resented by an integral vector of RN having only non-negative coordinates:
We choose some path along the edges of Q passing v0 = 0, . . . , vp = v(c) and
decreasing the value of c at each step. This provides some vector λc ∈ ZN

yielding η(c) with ηi(c) = −λc
i 〈di, c〉 ≥ 0.

Denote by vj0 , . . . , vjq ({j0, . . . , jq} ⊆ {0, . . . , p}) the L-vertices on
the path. Then, for s = 1, . . . , q, the edges between vjs−1 and vjs (say
di1 , . . . , dik) belong to the same “component”. In particular, not the single
η∗i1(c), . . . , η

∗
ik
(c) but only their sums have to be considered:

k∑
μ=1

η∗iμ(c) =
k∑

μ=1

ηiμ(c) =

〈
−

k∑
μ=1

λc
iμd

iμ , c

〉
=
〈
vjs−1 − vjs , c

〉
∈ N.

If v(c) belongs to the lattice L, then we are done. Otherwise, there might be
at most one non-integer coordinate (assigned to v(c) /∈ L) in η∗(c). However,
this cannot be the case, since the sum taken over all coordinates of η∗(c)
yields the integer η∗0(c).

(ii) We define the following paths through the 1-skeleton of Q:
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• λ := path from 0 ∈ Q to v(
∑

ν gνc
ν) ∈ Q,

• μν := path from v(
∑

ν gνc
ν) ∈ Q to v(cν) ∈ Q such that μν

i 〈di, cν〉 ≤ 0
for each i = 1, . . . , N .

Then λν := λ + μν is a path from 0 ∈ Q to v(cν), and for i = 1, . . . , N we
obtain

∑
ν

gνηi(c
ν)− ηi

(∑
ν

gνc
ν

)
= −

∑
ν

gν(λi + μν
i )〈di, cν〉+ λi

〈
di,
∑
ν

gνc
ν

〉

= −
∑
ν

gνμ
ν
i 〈di, cν〉 ≥ 0.

This yields the (componentwise) inequality

∑
ν

gνη
∗(cν) ≥

∑
ν

gνη(c
ν) ≥ η

(∑
ν

gνc
ν

)
.

On the other hand, η(
∑

ν gνc
ν) and η∗(

∑
ν gνc

ν) might differ in at most

one coordinate (assigned to a(
∑

ν gνc
ν)). If so, then by definition of η∗ the

latter one equals the smallest integer not smaller than the first one. Hence,
we are done, since the left hand side of our inequality involves integers only.

We obtain the following description of C̃(Q)∨:

3.6. Proposition. (1) C̃(Q)∨ =
{
[c, η] ∈ (Q∞)∨×V ∗ ⊆ A∗×V ∗ | η−η(c) ∈

C(Q)∨
}
.

(2) In particular,
[
c, η(c)

]
∈ C̃(Q)∨; it is the only preimage of

[
c, η0(c)

]
∈ σ∨ via the surjection i∨ : C̃(Q)∨ � σ∨. Moreover, for c ∈ L∗ ∩ (Q∞)∨, it
holds

[
c, η∗(c)

]
∈ C̃(Q)∨ ∩ M̃ . These elements are liftings of

[
c, η∗0(c)

]
∈

σ∨ ∩M – but, in general, they are not the only ones.

(3)
[
c1, η∗(c1)

]
, . . . ,

[
cw, η∗(cw)

]
and C(Q)∨ ∩ V ∗

Z , embedded as[
0, C(Q)∨

]
, generate the semigroup Γ :=

{
[c, η] ∈

(
L∗ ∩ (Q∞)∨

)
× V ∗

Z |
η− η∗(c) ∈ C(Q)∨

}
⊆ C̃(Q)∨ ∩ M̃ . Moreover, C̃(Q)∨ ∩ M̃ is the saturation

of that subsemigroup.
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Proof. The proof of (1) and (2) is similar to the proof of [1, Prop. (4.6)].

(3) First, the condition η−η∗(c) ∈ C(Q)∨ indeed describes a semigroup;

this is a consequence of (ii) of Lemma 3.5. On the other hand, let
[
c, η∗(c)

]
be given. Using some representation

[
c, η∗0(c)

]
=
∑w

t=1 pν
[
cν , η∗0(cν)

]
(pν ∈ N), we obtain by the same lemma∑
ν

pνη
∗(cν)− η∗(c) =

∑
ν

pνη
∗(cν)− η∗

(∑
ν

pνc
ν

)
∈ C(Q)∨ (or even ≥ 0).

Since, at the same time, the sum taken over all coordinates of that difference
vanishes, the whole difference has to be zero. Now we obtain

[c, η] =
[
c, η∗(c)

]
+
[
0, η − η∗(c)

]
=
∑
ν

pν
[
cν , η∗(cν)

]
+
[
0, η − η∗(c)

]
.

Finally, for every [c, η] ∈ C̃(Q)∨ with η − η∗(c) /∈ C(Q)∨ there exists
a k ∈ N≥1 such that η∗(k · c) = η(k · c), since v(c) = a(k · c) yields

η(k · c) = k · η(c) and η(c) ∈ QN . Then we obtain

k · η − η∗(k · c) = k · η − η(k · c) = k ·
(
η − η(c)

)
∈ C(Q)∨

by part (i) of this proposition.

3.7. Now we will provide an example for the case Γ 
= C̃(Q)∨ ∩ M̃ :

Example. Let N = Z3 be a lattice. Define the cone σ by

σ :=
〈
(0, 0, 1), (6,−1, 2), (5, 0, 1), (5, 1, 1), (24, 7, 5), (6, 5, 2), (2, 3, 1)

〉
⊆ Q3 = NQ.

We choose R := [0, 0, 1] ∈M = Z3 and obtain the following polygon Q:
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The paths along the edges of Q are denoted as follows:

d1 =

(
3
−1

2

)
, d2 =

(
2
1
2

)
, d3 =

(
0
1

)
, d4 =

(
−1

5
2
5

)
,

d5 =

(
−9

5
11
10

)
, d6 =

(
−1
1
2

)
, d7 =

(
−2
−3

)
.

Let us consider V (Q). We identify ti and tj if the corresponding edges have
a common non-lattice vertex. Then V (Q) as a subspace of R4 is the kernel
of the following matrix obtained by the 2-face equation of Q:(

5 0 −3 −2
0 1 2 −3

)
.

It is generated by t1 := (13, 0, 15, 10) and t2 := (2, 15, 0, 5), and this leads
to C(Q) = R≥0 · t1 ⊕ R≥0 · t2.

Let c := [−1,−1] ∈ M , then v(c) = a5 and λc = (1, 1, 1, 1, 0, 0, 0). Now
we compute η(c) as described in (3.4):

η(c) = [5/2, 5/2, 1, 1/5, 0, 0, 0].

Since we only described V (Q) as a subspace of R4, we can also denote η(c)
by η(c) = [5, 1, 1/5, 0], which corresponds to taking the sum on components
of Q. Let η := [5, 1, 3/5, 2/5] ∈ V ∗, so that it is also contained in V ∗

Z :
Since the first row of the matrix defining V (Q) yields 5t1 = 3t3 + 2t4, the
sum on the right hand side has 5 as a divisor if we only consider integral
solutions. We could also regard η as [6, 1, 0, 0] as element of V ∗

Z . Let us
consider η − η(c):

η − η(c) = [5− 5, 1− 1, 3/5− 1/5, 2/5− 0] = [0, 0, 2/5, 2/5].

Obviously η − η(c) is contained in C(Q)∨, as it has positive entries only.

Hence, [c, η] ∈ C̃(Q)∨ ∩ M̃ .

We build up η∗(c) as described in (3.4): η∗(c) = [5, 1, 1, 0]. This yields

η − η∗(c) = [5− 5, 1− 1, 3/5− 1, 2/5− 0] = [0, 0,−2/5, 2/5].
Now we apply this to t1:〈

t1, η − η∗(c)
〉
=
〈
(13, 0, 15, 10), [0, 0,−2/5, 2/5]

〉
= −2/5 · 15 + 2/5 · 10

= −6 + 4 = −2.
Hence, we gain η − η∗(c) /∈ C(Q)∨ and [c, η] /∈ Γ.
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Remark. If one replaces the semigroup C̃(Q)∨ ∩ M̃ by its non-saturated
subgroup Γ and X by X ′ := SpecC[Γ], respectively, then the diagram
of (3.1) becomes a fiber product diagram. Moreover, X ′ equals the scheme
theoretical image of the map X → Cw × S induced by the elements[
c1, η∗(c1)

]
, . . . ,

[
cw, η∗(cw)

]
∈ Γ. And, in return, X is the normalization

of X ′.

4. A Flat Family over M̄

We use the previous constructions to provide a deformation of Y over M̄:

4.1. Theorem. Denote by X̄ and S̄ the scheme theoretical images of X
and S in Cw × CN and CN , respectively. Then

(1) X → X̄ and S → S̄ are the normalization maps,

(2) π : X ′ → S induces a map π̄ : X̄ → S̄ such that π can be recovered
from π̄ via base change S → S̄, and

(3) restricting toM⊆ S̄ and composing with � turns π̄ into a family

X̄ ×S̄M
π̄−→M �−→ M̄.

It is flat in 0 ∈ M̄ ⊆ CN−1, and the special fiber equals Y .

The proof of this theorem will fill Section 4.

4.2. The ring of regular functions A(S̄) is given as the image of C[t1, . . . , tN ]
→ A(S). Since ZN � V ∗

Z is surjective, the rings A(S̄) ⊆ A(S) ⊆ C[V ∗
Z ] have

the same field of fractions.

On the other hand, while t-monomials with negative exponents might be
involved in A(S), the surjectivity of RN

≥0 � C(Q)∨ tells us that sufficiently
high powers of those monomials always come from A(S̄). In particular,
A(S) is normal over A(S̄).

A(X̄) is given as the image A(X̄) = im
(
C[Z1, . . . , Zw, t1, . . . , tN ] →

A(X ′)
)

with Zi �→ [monomial associated to
[
ci, η∗0(ci)

]
]. Since A(X ′) is

generated by these monomials over its subring A(S), cf. Proposition 3.6(3),
the same arguments as for S and S̄ apply. Hence, Part (1) of the previous
theorem is proved.
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4.3. Denoting by z1, . . . , zw, t the variables mapping to the A(Y )-monomials
with exponents

[
c1, η∗0(c1)

]
, . . . ,

[
cw, η∗0(cw)

]
, [0, 1] ∈ σ∨ ∩M , respectively,

we obtain the following equations for Y ⊆ Cw+1:

f(a,b,α,β)(z, t) := tα
w∏
t=1

zaνν − tβ
w∏
t=1

zbνν

with a, b ∈ Nw :
∑
ν

aνc
ν =

∑
ν

bνc
ν and

α, β ∈ N :
∑
ν

aνη
∗
0(c

ν) + α =
∑
ν

bνη
∗
0(c

ν) + β.

Defining c :=
∑

ν aνc
ν =

∑
ν bνc

ν , we can lift them to the following elements
of A(S̄)[Z1, . . . , Zw] (described by using liftings to C[Z1, . . . , Zw, t1, . . . , tN ]):

F(a,b,α,β)(Z, t) := f(a,b,α,β)(Z, t1)

− Z[c,η∗(c)] · (tαe1+
∑

ν aνη∗(cν) − tβe1+
∑

ν bνη∗(cν)) · t−η∗(c).

Remark. (1) The symbol Z[c,η∗(c)] means
∏w

v=1 Z
pν
ν with natural num-

bers pν ∈ N such that
[
c, η∗(c)

]
=
∑

ν pν
[
cν , η∗(cν)

]
, or equivalently[

c, η∗0(c)
]

=
∑

ν pν
[
cν , η∗0(cν)

]
. This condition does not determine the

coefficients pν uniquely – choose one of the possibilities. Choosing other
coefficients qν with the same property yields

Zp1
1 · · · · · Zpw

w − Zq1
1 · · · · · Zqw

w = F(p,q,0,0)(Z, t) = f(p,q,0,0)(Z, t).

(2) By part (iii) of Lemma 3.5, we have
∑

ν aνη
∗(cν),

∑
ν bνη

∗(cν) ≥
η∗(c) in the sense of (3.3). In particular, representatives of the η∗’s can
be chosen such that all t-exponents occurring in monomials of F are non-
negative integers, i.e. F indeed defines an element of A(S̄)[Z1, . . . , Zw].

4.4. Lemma. The polynomials F(a,b,α,β) generate Ker
(
A(S̄)[Z]→ A(X ′)

)
,

i.e. they can be used as equations for X̄ ⊆ Cw × S̄.

Proof. Mapping F into A(X ′) = ⊕[c,η]Cx
[c,η] ([c, η] runs through all ele-

ments of Γ ∩ (L∗ × V ∗
Z ); Zν �→ x[c

ν,η∗(cν)], ti �→ x[0,ei]) yields

F(a,b,α,β) =

(
tα1
∏
ν

Zaν
ν − Z[c,η∗(c)]tαe1+

∑
ν aνη∗(cν)−η∗(c)

)

−
(
tβ1
∏
ν

Zbν
ν − Z[c,η∗(c)]tβe1+

∑
ν bνη∗(cν)−η∗(c)

)
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�→ (xα[0,e1]+
∑

ν aν [cν,η∗(cν)] − x[c,η
∗(c)]+α[0,e1]+

∑
ν aν [0,η∗(cν)]−[0,η∗(c)])

− (xβ[0,e1]+
∑

ν bν [cν,η∗(cν)] − x[c,η
∗(c)]+β[0,e1]+

∑
ν bν [0,η∗(cν)]−[0,η∗(c)])

= 0− 0 = 0.

On the other hand, Ker
(
A(S̄)[Z] → A(X ′)

)
is obviously generated by the

binomials tηZa1
1 · · · · · Zaw

w − tμZb1
1 · · · · · Zbw

w such that∑
ν

aν
[
cν , η∗(cν)

]
+ [0, η] =

∑
ν

bν
[
cν , η∗(cν)

]
+ [0, μ],

i.e. c :=
∑
ν

aνc
ν =

∑
ν

bνc
ν and

∑
ν

aνη
∗(cν) + η =

∑
ν

bνη
∗(cν) + μ.

However,

tηZa − tμZb = tη ·
(∏

ν

Zaν
ν − Z[c,η∗(c)]t

∑
ν aνη∗(cν)−η∗(c)

)

− tμ ·
(∏

ν

Zbν
ν − Z[c,η∗(c)]t

∑
ν bνη∗(cν)−η∗(c)

)
= tη · F(a,p,0,α) − tμ · F(b,p,0,β)

with p ∈ Nw such that
∑

ν pν
[
cν , η∗(cν)

]
=
[
c, η∗(c)

]
, α =

∑
ν aνη

∗
0(c

ν) −
η∗0(c), and β =

∑
ν bνη

∗
0(c

ν)− η∗0(c).

Using exponents η, μ ∈ ZN (instead of NN ), the binomials tηZa − tμZb

generate the kernel of the map

A(S)[Z] = A(S̄)[Z]⊗A(S̄) A(S) � A(X̄)⊗A(S̄) A(S) � A(X ′).

Since

Za⊗tη−Zb⊗tμ = Z[c,η∗(c)]⊗(t
∑

ν aνη∗(cν)−η∗(c)+η−t
∑

ν bνη∗(cν)−η∗(c)+μ) = 0

in A(X̄) ⊗A(S̄) A(S), this implies that the surjection A(X̄) ⊗A(S̄) A(S) �
A(X ′) is injective, too. In particular, part (2) of our theorem is proved.

We are going to use the following well known criterion of flatness:
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4.5. Theorem. Let π̃ : X̃ ↪→ Cw+1 × M̄ � M̄ be a map with special
fiber Y = π̃−1(0); in particular, Y ⊆ Cw+1 is defined by the restrictions to
0 ∈ M̄ of the equations defining X̃ ⊆ Cw+1×M̄. Then π̃ is flat, if and only
if each linear relation between the (restricted) equations for Y lifts to some
linear relation between the original equations for X̃.

Proof. According to [7, (20.C), Theorem 49], flatness of π̃ in 0 ∈ M̄ is

equivalent to the vanishing of Tor
OM̄,0

1

(
(π̃∗OX̃)

0
,C
)
where C becomes an

OM̄,0-module via evaluating in 0 ∈ M̄.

Using the embedding X̃ ↪→ Cw+1×M̄ (together with the defining equa-
tions and linear relations between them) we obtain an OM̄,0[Z0, . . . , Zw]-
free (hence OM̄,0-free) resolution of (π̃∗OX̃)

0
up to the second term. Now,

the condition that relations between Y -equations lift to those between X̃-
equations is equivalent to the fact that our (partial) resolution remains exact
under ⊗OM̄,0

C.

For our special situation take X̃ := X̄ ×S̄M (and M̄ := M̄, Y := Y );
in (4.3) we have seen how the equations defining Y ↪→ Cw ×C can be lifted
to those defining X̄ ↪→ Cw× S̄, hence X̄×S̄M ↪→ Cw×M ∼→ Cw×C×M̄.

In particular, to show (3) of Theorem 4.1, we only have to take the
linear relations between the f(a,b,α,β)’s and lift them to relations between
the F(a,b,α,β)’s.

4.6. According to the special shape of our generator set E, there are three
types of relations between the f(a,b,α,β)’s:

(i) f(a,r,α,γ) + f(r,b,γ,β) = f(a,b,α,β) with∑
ν

aνc
ν =

∑
ν

rνc
ν =

∑
bνc

ν and

∑
ν

aνη
∗
0(c

ν) + α =
∑
ν

rνη
∗
0(c

ν) + γ =
∑
ν

bνη
∗
0(c

ν) + β.

For this relation, the same equation between the F ’s is true.

(ii) t · f(a,b,α,β) = f(a,b,α+1,β+1) lifts to t1 · F(a,b,α,β) = F(a,b,α+1,β+1).

(iii) zr · f(a,b,α,β) = f(a+r,b+r,α,β).
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With c :=
∑

ν aνc
ν =

∑
ν bνc

ν , c̃ := c+
∑

ν rνc
ν we obtain for (iii)

Zr · F(a,b,α,β) − F(a+r,b+r,α,β)

= Z[c̃,η∗(c̃)] · (tαe1+
∑

ν aνη∗(cν)+
∑

ν rνη∗(cν)

− tβe1+
∑

ν bνη∗(cν)+
∑

ν rνη∗(cν)) · t−η∗(c̃)

− Z[c,η∗(c)]Zr · (tαe1+
∑

ν aνη∗(cν) − tβe1+
∑

ν bνη∗(cν)) · t−η∗(c)

= (tαe1+
∑

ν aνη∗(cν)−η∗(c) − tβe1+
∑

ν bνη∗(cν)−η∗(c))

· (tη
∗(c)+

∑
ν rνη∗(cν)−η∗(c̃)Z[c̃,η∗(c̃)] − Z[c,η∗(c)]Zr).

Now, the inequalities∑
ν

aνη
∗(cν),

∑
ν

bνη
∗(cν) ≥ η∗(c) and η∗(c) +

∑
ν

rνη
∗(cν)− η∗(c̃) ≥ 0

imply that the first factor is contained in the ideal defining 0 ∈ M̄ and that
the second factor is an equation of X̄ ⊆ Cw × S̄ (called F(q,p+r,ξ,0) in (6.7)).
In particular, we have found a lift for the third relation, too. The proof of
Theorem 4.1 is complete.

5. The Kodaira–Spencer Map

5.1. To each vertex vj ∈ Q we associate the subset

Ej := Evj := {
[
c, η∗0(c)

]
∈ E | 〈vj , c〉+ η∗0(c) < 1}.

Additionally define the sets

E0 :=
⋃
j

Ej , Eij := Ei ∩ Ej .

Let r =
[
c, η∗0(c)

]
∈ E be given. Then we have

〈vj , c〉+ η∗0(c) = 〈(vj , 1)
[
c, η∗0(c)

]〉 = 〈aj , r〉〈aj , R〉
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and we obtain the following alternative description of Ej :

Ej :=
{
r ∈ E | 〈aj , r〉 < 〈aj , R〉

}
.

In other words: The primitive generators aj of σ define the facets of the
dual cone σ∨, i.e. they define hyperplanes such that σ∨ is the intersection
of the halfspaces above these hyperplanes:

σ∨ =
⋃
j

{
m ∈MR | 〈aj ,m〉 ≥ 0

}
⊆MR.

Now Ej contains those elements of E that are closer to the facet of σ defined
by aj than R.

We also get the following alternative description of η∗(c) compared with
its definition in (3.4):

5.2. Lemma. Assume that
[
c, η∗0(c)

]
is contained in Ej . Then

η∗(c) = 〈vj•,−c〉+
(
〈vj , c〉+ η∗0(c)

)
· e[vj ]

where vj• denotes the map assigning t ∈ V (Q) the vertex vjt of the (general-
ized) Minkowski summand Qt.

Proof. If vj ∈ L, then the condition 〈vj , c〉 + η∗0(c) < 1 is equivalent to
〈vj ,−c〉 = η0(c) = η∗0(c). Hence, the second summand in our formula
vanishes, and we are done.

On the other hand, if vj /∈ L, then there is not any lattice point contained
in the strip 〈vj , c〉 ≥ 〈•, c〉 >

〈
v(c), c

〉
. In particular, every edge on the

path from vj to v(c) (decreasing the c-value at each step) belongs to the
“component” induced by vj , cf. (2.2). Now, our formula follows from the
definition of η∗(c).

5.3. Denoting by L(•) the abelian group of Z-linear relations of the argu-
ment, we consider the bilinear map

Φ : VZ/Z · 1 × L(∪jEj) −→ Z

t , q �→
∑
v,i

tiqνη
∗
i (c

ν).
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It is correctly defined, and we obtain Φ(t, q) = 0 for q ∈ L(Ej). Indeed,

Φ(t, q) =
∑
ν

qν
〈
t, η∗(cν)

〉
=
∑
ν

qν · (〈vjt ,−cν〉+
(
〈vj , cν〉+ η∗0(c

ν)
)
· tvj)

=

〈
vjt ,−

∑
ν

qνc
ν

〉
+

(∑
ν

qνη
∗
0(c

ν)−
〈
vj ,
∑
ν

qνc
ν

〉)
· tvj = 0.

5.4. Theorem. The Kodaira–Spencer map of the family X̄ ×S̄ M → M̄
of (4.1) equals the map

T0M̄ = VC
/
C · 1 −→

(
LC(E ∩ ∂σ∨)

/∑
j

LC(Ej)

)∗
= T 1

Y (−R)

induced by the previous pairing. Moreover, this map is an isomorphism.

Proof. Using the same symbol J for the ideal J ⊆ C[t1, . . . , tN ] as well
as for the intersection J ∩ C[ti − tj | 1 ≤ i, j ≤ N ], cf. (2.4), our family
corresponds to the flat C[ti− tj ]/J -module C[Z, t]/

(
J , F•(Z, t)

)
. Now, we

fix a non-trivial tangent vector t0 ∈ VC. Via ti �→ t + t0i ε, it induces the
infinitesimal family given by the flat C[ε]/

ε2
-module

At0 := C[z, t, ε]
/(

ε2, F•(z, t+ t0ε)
) .

To obtain the associated A(Y )-linear map I/I2 → A(Y ) with I :=
(
f•(z, t)

)
denoting the ideal of Y in Cw+1, we have to compute the images of f•(z, t)
in εA(Y ) ⊆ At0 and divide them by ε: Using the notation of (4.3), in At0

it holds true that

0 = F(a,b,α,β)(z, t+ t0ε)

= f(a,b,α,β)(z, t+ t01ε)

− z[c,η
∗(c)] · (

(
t+ t0ε

)αe1+∑
ν aνη∗(cν)−η∗(c)

−
(
t+ t0ε

)βe1+∑
ν bνη∗(cν)−η∗(c)).
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The relation ε2 = 0 yields

f(a,b,α,β)(z, t+ t01ε) = f(a,b,α,β)(z, t) + ε · (αtα−1t01z
a − βtβ−1t01z

b),

and similarly we can expand the other terms. Eventually, we obtain

f(a,b,α,β)(z, t) = −εt01
(
αtα−1za − βtβ−1zb

)
+ εz[c,η

∗(c)]tα+
∑

ν aνη∗0(c
ν)−η∗0(c)−1

·
[
t01(α− β) +

∑
i

t0i

(∑
ν

(aν − bν)η
∗
i (c

ν)

)]

= ε · x
∑

ν aν
[
cν ,η∗0(c

ν)
]
+[0,α−1] ·

(∑
i

t0i

(∑
ν

(aν − bν)η
∗
i (c

ν)

))
.

Note that, in εA(Y ), we were able to replace the variables t and zν by x[0,1]

and x[c
ν ,η∗0(c

ν)], respectively.

On the other hand, the explicit description of T 1
Y (−R) as LC(E ∩

∂σ∨)/
∑

j LC(Ej) was given in [3, Theorem (3.4)]. It even says that the

map I/I2 → A(Y ) with
(
tαza − tβzb

)
�→ (

∑
i,v t

0
i (aν − bν)η

∗
i (c

ν)) ·
x
∑

ν aν [cν ,η∗0(c
ν)]+[0,α−1] corresponds to q �→∑i,v t

0
i qνη

∗
i (c

ν) = Φ(t0, q).

In [2] it was already proven that there is an isomorphism Ψ : T 1
Y (−R)→

V/1 if Y is smooth in codimension two. Now we want to show that the
composition Ψ◦Φ yields the identity on V/1. Thus we have to take a closer
look at the construction of Ψ.

Let us switch from the notion of L(Ej) to the notion of span (Ej). The
advantage lies in that span (Ej) is much easier to describe than L(Ej):

Remark.

spanREj =

⎧⎪⎪⎨⎪⎪⎩
0 〈aj , R〉 = 0

(aj)
⊥ 〈aj , R〉 = 1

MR 〈aj , R〉 ≥ 2.

To change between the two notions, let q ∈ L(E0) be given. Then
decompose q =

∑
j q

j with qj ∈ ZEj . Define wj :=
∑

ν q
j
νrν , rν ∈ E so that

the vector (w1, . . . , wM ) is contained in ker (⊕j spanEj →M).

Let τ < σ be a face. We define the following set

Eτ :=
⋂
aj∈τ

Ej
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and obtain a complex span (E)• with

span−k(E) =
⊕

τ a face of σ
dim τ=k

Eτ

and the obvious differentials. Now the dual complex yields the following
description of T 1

Y (−R):

5.5. Theorem ([3] (6.1)). The homogenous piece of T 1
Y in degree −R is

given by
T 1
Y (−R) = H1

(
span (E)∗• ⊗Z C

)
,

i.e. T 1
Y (−R) equals the complexification of the cohomology of the subse-

quence

NR →
⊕
j

(spanREj)
∗ →

⊕
〈aj ,aj〉<σ

(spanREij)
∗

of the dual complex to span (E)•.

Given an element b ∈ T 1
Y (−R), we can build an element t ∈ V/1. First

we will show how to build t ∈ V from a given b ∈⊕j (spanREj)
∗. Then we

will show that the action of NR equals the action of R · 1 on V .

Step 1: By the above remark, we can represent b ∈⊕j (spanREj)
∗ by

a family of

• bj ∈ NR if 〈aj , R〉 ≥ 2 and

• bj ∈ NR/R · aj if 〈aj , R〉 = 1.

We will only consider the bj for 〈aj , R〉 ≥ 1, otherwise spanEj will be zero.
This corresponds to the fact that vj = aj/〈aj , R〉 is not a vertex of Q.

Dividing by the image of NR means shifting the family by a common
vector c ∈ NR. The condition of our family {bj} mapping onto 0 means that

bj and bk have to be equal on spanREik for each compact edge vj , vk < Q.
Since

(aj , ak)
⊥ ⊆ spanREjk ⊆ spanREj ∩ spanREk

we obtain bj − bk ∈ Raj + Rak.

Step 2: Let us introduce new coordinates

b
j
:= bj − 〈bj , R〉vj ∈ R⊥.
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The condition bj − bk ∈ Raj + Raj changes into the condition b
j − b

k ∈
Rvj + Rvk. We assume 〈aj , R〉, 〈ak, R〉 
= 0, i.e. aj , ak /∈ R⊥. On the other

hand, we know b
j
, b

k ∈ R⊥, hence b
j − b

k ∈ R⊥. This yields

b
j − b

k ∈ (Rvj + Rvk) ∩R⊥ = R(vj − vk).

Thus we obtain
b
j − b

k
= tjk · (vj − vk).

Now collect these tij for each compact edge vj , vk < Q. Together they yield
an element tb ∈ RN .

Step 3: Consider shifting the family by a common vector c ∈ NR, i.e.
bj

′
:= bj + c. We obtain

t′jk(v
j − vk) = b

j′ − b
k′

=
(
bj + c− 〈bj , R〉vj − 〈c, R〉vj

)
−
(
bk + c− 〈bk, R〉vk − 〈c,R〉vk

)
= b

j − b
k − 〈c,R〉 · (vj − vk) =

(
tjk − 〈c,R〉

)
· (vj − vk).

Hence, the action of c ∈ NR comes down to an action of 〈c,R〉 only, and we
obtain tb ∈ RN/1.

Step 4: It is rather easy to see that tb satisfies the 2-face equations of V .
In [2] (2.7) it is proven that tb also satisfies the equations given by non
lattice vertices of Q since Y is smooth in codimension two. We obtain the
following Corollary:

Corollary ([2] (2.6)). If Y is smooth in codimension two

Ψ : T 1
Y (−R) −→ VC/1

b �→ tb

is an isomorphism.

Step 5: Let us now combine Φ with this isomorphism. Denoting by tj the
coordinate of t corresponding to the component arising from a non-lattice
vertex vj and defining gj := −∑ν q

j
ν

[
cν , η∗0(cν)

]
, we obtain

Φ(t, q) =
∑
j

Φ(t, qj) =
∑
j,ν

qjν
〈
t, η∗(cν)

〉
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=
∑
j,ν

qjν〈vjt ,−cν〉+
∑
j,ν

qjν
[
η∗0(c

ν) + 〈vj ,−cν〉
]
· tj

=
∑
j,ν

〈
(vjt , 0), g

j
〉
−
〈
(vj , 1), gj

〉
· tj

i.e. Φ assigns to t exactly the vertices of the corresponding Minkowski
summand Qt. Thus, applying Ψ to Φ(t) yields the identity.

6. The Obstruction Map

Now we can approach the main goal of this paper:

6.1. Theorem. The family of Theorem 4.1 with base space M̄ is the versal
deformation of Y of degree −R.

By [4] we know that a deformation is versal if the Kodaira–Spencer-map
is an isomorphism and the Obstruction map is injective. In Section 5 we
proved the first condition for the degree-R-part of T 1

Y . The following section
will prove the second condition, i.e. the injectivity of the obstruction map.

6.2. Dealing with obstructions in the deformation theory of Y involves the
A(Y )-module T 2

Y . Usually it is defined in the following way: Let

m :=

{(
[a, α], [b, β]

)
∈ Nw+1 × Nw+1

∣∣∣ ∑
ν

aνc
ν =

∑
ν

bνc
ν and

∑
ν

aνη
∗
0(c

ν) + α =
∑
ν

bνη
∗
0(c

ν) + β

}
denote the set parametrizing the equations f(a,b,α,β) generating the ideal
I ⊆ C[z, t]. Then

R := ker
(
ϕ : C[z, t]m � I

)
is the module of linear relations between these equations; it contains the
submodule R0 of the so-called Koszul relations, i.e. those of the form fj ·
ei− fi · ej where fi, fj are generators of I and ei, ej are their corresponding
preimages under ϕ.
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Definition. T 2
Y :=

Hom (R/R0
, A)/

Hom
(
C[z, t]

m
, A
) .

Recall that R = [0, 1]. To obtain information about T 2 not only in
degree −R but also in its multiples k · R, k ≥ 2, we define, analogously to
Ej , the following sets:

Ek
j := {[cν , η∗0(cν)] | 〈aj , cν〉+ η∗0(c

ν) < k} ∪ {R} ⊆ σ∨ ∩M.

For the following theorem it is very important that σ has smooth two-
dimensional faces, i.e. that Y is smooth in codimension two:

6.3. Theorem [3]. The vector space T 2
Y is M -graded, and in degree −kR

it equals

T 2
Y (−kR) =

(
ker
(
⊕j LC(E

k
j )→ LC(E)

)
im (⊕〈vi,vj〉<Q LC(E

k
i ∩ Ek

j )→ ⊕iLC(E
k
i ))

)∗
.

6.4. In this section we build up the so-called obstruction map. It detects
all infinitesimal extensions of our family over M̄ to a flat family over some
larger base space. By J let us denote

J := (gd,k(t− t1 | d ∈ V ⊥ ∩ ZN , k ≥ 1) ⊆ C[ti − tj ]

the homogenous ideal of the base space M̄. Let J1 denote the degree 1 part
of J . We define the subideal J̃ ⊆ J by:

J̃ = (ti − tj)i,j · J + J1 · C[ti − tj ] ⊆ C[ti − tj | 1 ≤ i, j ≤ N ].

Then W := J /J̃ is a finite-dimensional, Z-graded vector space. It comes
as the kernel in the exact sequence

0→W → C[ti − tj ]
/
J̃ →

C[ti − tj ]
/
J → 0.

Identifying t with t1 and z with Z, the tensor product with C[z, t] over C
yields the important exact sequence

0→W ⊗ C[z, t]→ C[Z, t]
/
J̃ · C[Z, t]

→ C[Z, t]
/
J · C[Z, t] → 0.

Now, let s be any relation with coefficients in C[z, t] between the equations
f(a,b,α,β), i.e. ∑

s(a,b,α,β)f(a,b,α,β) = 0 in C[z, t].
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By flatness of our family, cf. (4.6), the components of s can be lifted to
C[Z, t] obtaining an s̃, such that∑

s̃(a,b,α,β)F(a,b,α,β) = 0 in C[Z, t]
/
J · C[Z, t].

In particular, each relation s ∈ R induces some element

λ(s) :=
∑

s̃F ∈W ⊗ C[z, t] ⊆ C[Z, t]
/
J̃ · C[Z, t]

.

which does not depend on choices after the additional projection to W ⊗C

A(Y ). This procedure describes a certain element λ ∈ T 2
Y ⊗C W =

Hom(W ∗, T 2
Y ) called the obstruction map.

The remaining part of Sect. 6 contains the proof of the following theo-
rem:

6.5. Theorem. The obstruction map λ : W ∗ → T 2
Y is injective.

6.6. We have to improve our notation of Sects. 3 and 4. Since M ⊆ S̄ ⊆
CN , we were able to use the toric equations, cf. (2.5) during computations
modulo J . In particular, the exponents η ∈ V ∗ of t needed only to be

known modulo V ⊥; it was enough to define η∗(•) as elements of V ∗
Z .

However, to compute the obstruction map, we have to deal with the
smaller ideal J̃ ⊆ J . Let us start with refining the definitions of (3.4):

(i) For each vertex v ∈ Q, we choose certain paths through the 1-skeleton
of Q:

• λ(v) := path from 0 ∈ Q to v ∈ Q.

• μν(v) := path from v ∈ Q to v(cν) ∈ Q such that μν
i (v)〈di, cν〉 ≤ 0 for

each i = 1, . . . , N .

• λν(v) := λ(v) + μν(v) is then a path from 0 ∈ Q to v(cν) depending
on v.

(ii) For each c ∈ (Q∞)∨, we use the vertex v(c) to define

ηc(c) := [− λ1

(
v(c)
)
〈d1, c〉, . . . ,−λN

(
v(c)
)
〈dN , c〉] ∈ QN

and

ηc(cν) := [− λν
1

(
v(c)
)
〈d1, cν〉, . . . ,−λν

N

(
v(c)
)
〈dN , cν〉] ∈ QN .
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Additionally, if v(c) /∈ L, we need to define

η∗c(c) := ηc(c) +
[
η∗0(c)− η0(c)

]
· e
[
v(c)
]

and

1η∗c(cν) := ηc(cν) +
[
η∗0(c

ν)− η0(c
ν)
]
· e
[
v(cν)

]
.

(iii) For each c ∈ (Q∞)∨ ∩ L∗ we fix a representation c =
∑

ν p
c
νc

ν

(pcν ∈ N) such that
[
c, η∗0(c)

]
=
∑

ν p
c
ν

[
cν , η∗0(cν)

]
. (That means, c is

represented only by those generators cν that define faces of Q containing the
face defined by c itself.) Now, we improve the definition of the polynomials
F•(Z, t) given in (4.3). Let a, b ∈ Nw, α, β ∈ N such that

(
[a, α], [b, β]

)
∈

m ⊆ Nw+1 × Nw+1, i.e.

c :=
∑
ν

aνc
ν =

∑
ν

bνc
ν and

∑
ν

aνη
∗
0(c

ν) + α =
∑
ν

bνη
∗
0(c

ν) + β.

Then

F(a,b,α,β)(Z, t) := f(a,b,α,β)(Z, t1)

− Zpc · (tαe1+
∑

ν aνη∗c(cν)−η∗c(c) − tβe1+
∑

ν bνη∗c(cν)−η∗c(c)).

6.7. We need to discuss the same three types of relations as we did in (4.6).
Since there is only one single element c ∈ L involved in the relations (i)
and (ii), computing modulo J̃ instead of J makes no difference in these
cases – we always obtain λ(s) = 0. Let us consider the third relation
s := [zr · f(a,b,α,β) − f(a+r,b+r,α,β) = 0] (r ∈ Nw). We will use the following
notation:

• c :=
∑
ν

aνc
ν =

∑
ν

bνc
ν ; p := pc; η∗ := η∗c;

• c̃ :=
∑
ν

(aν + rν)c
ν =

∑
ν

(bν + rν)c
ν =

∑
ν

(pν + rν)c
ν ;

q := pc̃; η̃∗ := η∗c̃;

• ξ :=
∑
i

((∑
ν

(pν+rν)η̃
∗
i (c

ν)

)
− η̃∗i (c̃)

)
=
∑
ν

(pν+rν)η
∗
0(c

ν)−η∗0(c̃).
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Using the same lifting of s to s̃ as in (4.6) yields

λ(s) = Zr · F(a,b,α,β) − F(a+r,b+r,α,β)

− (tαe1+
∑

ν aνη∗(cν)−η∗(c) − tβe1+
∑

ν bνη∗(cν)−η∗(c)) · F(q,p+r,ξ,0)

= −Zp+r · (tαe1+
∑

ν(aν−pν)η∗(cν) − tβe1+
∑

ν(bν−pν)η∗(cν))

+ Zq · (tαe1+
∑

ν(aν+rν−qν)η̃∗(cν) − tβe1+
∑

ν(bν+rν−qν)η̃∗(cν))

− (tαe1+
∑

ν(aν−pν)η∗(cν) − tβe1+
∑

ν(bν−pν)η∗(cν))

· (Zqt
∑

ν(pν+rν−qν)η̃∗(cν) − Zp+r)

= Zq · (tαe1+
∑

ν(aν+rν−qν)η̃∗(cν)

− tαe1+
∑

ν(pν+rν−qν)η̃∗(cν)+
∑

ν(aν−pν)η∗(cν))

− Zq · (tβe1+
∑

ν(bν+rν−qν)η̃∗(cν)

− tβe1+
∑

ν(pν+rν−qν)η̃∗(cν)+
∑

ν(bν−pν)η∗(cν)).

As in (4.6)(iii), we can see that λ(s) vanishes modulo J (or even in A(S̄))
– just identify η∗ and η̃∗.

6.8. In (6.2) we already mentioned the isomorphism

W ⊗C C[z, t]
∼−→ J · C[Z, t]

/
J̃ · C[Z, t]

obtained by identifying t with t1 and z with Z. Now, with λ(s), we have
obtained an element of the right hand side, which has to be interpreted as
an element of W ⊗C C[z, t]. For this, we quote from [1, Lemma (7.5)]:

6.9. Lemma. Let A,B ∈ NN such that d := A − B ∈ V ⊥, i.e. tA − tB ∈
J · C[Z, t]. Then, via the previously mentioned isomorphism, tA − tB

corresponds to the element∑
k≥1

ck · gd,k(t− t1) · tk0−k ∈W ⊗C C[z, t],

where k0 :=
∑

iAi, and ck are some constants occurring in the context of
symmetric polynomials, cf. [1, (3.4)]. In particular, the coefficients from Wk

vanish for k > k0.



Deformations of Toric Singularities 41

Corollary. Transferred to W ⊗C C[z, t], the element λ(s) equals∑
k≥1

ck · gd,k(t− t1) · zq · tk0−k with d :=
∑
ν

(aν − bν) ·
(
η̃(cν)− η(cν)

)
,

k0 := α+
∑
ν

(aν + rν)η
∗
0(c

ν)− η∗0(c̃).

The coefficients vanish for k > k0.

Proof. Since the e
[
v(c)
]
-terms kill each other, one can easily see, that

d =
∑
ν

(aν − bν) ·
(
η̃(cν)− η(cν)

)
=
∑
ν

(aν − bν) ·
(
η̃∗(cν)− η∗(cν)

)
.

We apply the previous lemma to both the a- and the b-summand of the
λ(s)-formula of (6.7). For the first one we obtain

d(a) =

[
αe1 +

∑
ν

(aν + rν − qν)η
∗(cν)

]

−
[
αe1 +

∑
ν

(pν + rν − qν)η
∗(cν) +

∑
ν

(aν − pν)η
∗(cν)

]

=
∑
ν

(aν − pν) ·
(
η̃∗(cν)− η∗(cν)

)
and

k0 =
∑
i

(
αe1 +

∑
ν

(aν + rν − qν)η̃
∗(cν)

)
i

= α+
∑
ν

(aν + rν − qν)η
∗
0(c

ν) = α+
∑
ν

(aν + rν)η
∗
0(c

ν)− η∗0(c̃).

k0 has the same value for both the a- and b-summand, and

d = d(a) − d(b)

=
∑
ν

(aν − pν) ·
(
η̃∗(cν)− η∗(cν)

)
−
∑
ν

(bν − pν) ·
(
η̃∗(cν)− η∗(cν)

)
=
∑
ν

(aν − bν) ·
(
η̃∗(cν)− η∗(cν)

)
.
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6.10. Now, we try to approach the obstruction map λ from the opposite
direction. Using the description of T 2

Y given in (6.2) we construct an element
of T 2

Y ⊗C W that, afterwards, will turn out to equal λ.

For ρ ∈ ZN induced from some path along the edges of Q, we will denote

d(ρ, c) :=
[
〈ρ1d1, c〉, . . . , 〈ρNdN , c〉

]
∈ RN

the vector showing the behavior of c ∈ L∗ passing each particular edge. If ρ
governs the walk between two lattice vertices and is regarded modulo ti− tj
(if di, dj contain a common non-lattice vertex), then d(ρ, c) is contained
in ZN . In particular, this property holds for closed paths. In this case
d(ρ, c) will be contained in V ⊥.

On the other hand, for each k ≥ 1, we can use the d’s from V ⊥ to get
elements gd,k(t − t1) ∈ Wk generating this vector space. Composing both
procedures we obtain, for each closed path ρ ∈ ZN , a map

g(k)(ρ, •) : A∗ −→ V ⊥ −→Wk

c �→ gd(ρ,c),k(t− t1).

6.11. Lemma. (1) Taking the sum over all compact 2-faces we get a
surjective map ∑

ε<Q

g(k)(ε, •) : ⊕ε<QA
∗ ⊗R C � Wk.

(2) Let c ∈ L∗ be integral. If ρ1, ρ2 ∈ ZN are two paths each connecting
vertices v, w ∈ Q such that

•
∣∣〈v, c〉 − 〈w, c〉∣∣ ≤ k − 1 and

• c is monotone along both paths, i.e.
〈
ρ
1/2
i di, c

〉
≥ 0 for i = 1, . . . , N ,

then ρ1 − ρ2 ∈ ZN will be a closed path yielding g(k)(ρ1 − ρ2, c) = 0 in Wk.

Proof. The reason for (1) is the fact that the elements d(ε, c) (ε < Q
compact 2-face; c ∈ L∗) and ei − ej (for di, dj containing a common non-
lattice vertex) generate V ⊥ as a vector space; since ti − tj ∈ J1 the latter
type yields zero in Wk.

For the proof of (2), we consider d := d(ρ1−ρ2, c). Since di =
〈
ρ1i d

i, c
〉
−〈

ρ2i d
i, c
〉

is the difference of two non-negative integers, we obtain d+i ≤〈
ρ1i d

i, c
〉
. Hence,∑

i

d+i ≤
∑
i

〈
ρ1i d

i, c
〉
= 〈w, c〉 − 〈v, c〉 ≤ k − 1,
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and we obtain gd,k(t− t1) ∈ J̃ by the following corollary.

Corollary. Let k0 :=
∑

d(ρ1 − ρ2, c)
+. Then gd(ρ1−ρ2,c),k(t − t1) ∈ J̃ for

k > k0.

Proof. Consider d ∈ V ⊥ ∩ ZN . From [3] proposition (2.3) we know that
gd,k(t− t1) can be written as a C[ti− tj ]-linear combinations of gd,1(t− t1),
. . . , gd,k0(t− t1) for k > k0, where k0 =

∑
i d

+
i .

Now d := d(ρ1 − ρ2, c) ∈ V ⊥ does not have to be contained in ZN .
But since the path ρ1 − ρ2 is closed, d yields an integer as sum on every
component. Since dij := [0, . . . , 0, 1i, 0, . . . , 0,−1j , 0, . . . , 0] ∈ V ⊥ for di,

dj containing a common non-lattice vertex we are able to find some d̃ ∈
V ⊥∩ZN with

∑
i d̃

+
i =

∑
i d

+
i such that gd̃,k(t− t1) = gd,k(t− t1)+

∑
ij qij ·

gdij ,k(t − t1), with the usual assumptions for i, j. In particular, the qij do
not depend on k. For the gd̃,k(t − t1) the first assumptions apply, and we
obtain for k > k0:

gd̃,k(t− t1) =

k0∑
n=1

an(t− t1) · gd̃,n(t− t1)

and

gd,k(t− t1) =

k0∑
n=1

an(t− t1) · gd̃,n(t− t1)−
∑
ij

qij · gdij ,k(t− t1).

Now we assume w.l.o.g. that an(t− t1) is homogenous and has degree k−n.
Hence, the first sum on the right hand side is contained in (ti − tj)ij ·J ⊆ J̃ .
Now consider the second sum. We know gdij ,1(t− t1) ∈ J1 and

∑
r (d

+
ij)r =

1. Thus gdij ,k(t − t1) = f(t − t1) · gdij ,1(t − t1) and this is contained in

J1 · C[ti − tj ] ⊆ J̃ .

6.12. Recalling the sets Ek
j from (6.2), we can define the following linear

maps:

ψ
(k)
j : L(Ek

j ) −→Wk

q �→ ∑
ν qν · g(k)

(
λ(vj) + μν(vj)− λ

(
v(cν)

)
, cν
)
.

(The q-coordinate corresponding to R ∈ Ek
j is not used in the definition

of ψ
(k)
j .)
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6.13. Lemma. Let 〈vj , vl〉 < Q be an edge of the polyhedron Q. Then, on

L(Ek
j ∩Ek

l ) = L(Ek
j )∩L(Ek

l ), the maps ψ
(k)
j and ψ

(k)
l coincide. In particular

(cf. Theorem 6.2), the ψ
(k)
j ’s induce a linear map ψ(k) : T 2

Y (−kR)∗ →Wk.

Proof. The proof is similar to the proof of Lemma (7.6) in [1].

Now, both ends will meet and we obtain an explicit description of the
obstruction map:

6.14. Proposition.
∑

k≥1 ckψ
(k) equals λ∗, the adjoint of the obstruction

map.

Proof. Using Theorem 3.5 of [3], we can find an element of Hom (R/R0
,

Wk ⊗ A(Y )) representing ψ(k) ∈ T 2
Y ⊗Wk – it sends relations of type (i),

cf. (4.6), to 0 and deals with relations of type (ii) and (iii) in the following
way:

[zrtγ · f(a,b,α,β) − f(a+r,b+r,α+γ,β+γ) = 0]

�→ ψ
(k)
j (a− b) · x

∑
ν(aν+rν)

[
cν ,η∗0(c

ν)
]
+(α+γ−k)R,

if 〈
(Q, 1),

∑
ν

(aν + rν)
[
cν , η∗0(c

ν)
]
+ (α+ γ − k)R

〉
≥ 0,

and j is such that〈
(vj , 1),

∑
ν

aν
[
cν , η∗0(c

ν)
]
+ (α− k)R

〉
< 0;

otherwise the relation is sent to 0 (in particular, if there is not any j meeting
the desired condition).

On Q, the linear forms c :=
∑

ν aνc
ν and c̃ =

∑
ν(aν + rν)c

ν admit their
minimal values at the vertices v(c) and v(c̃), respectively. Hence, we can
transform the previous formula into

[zrtγ · f(a,b,α,β) − f(a+r,b+r,α+γ,β+γ) = 0]

�→ ψ
(k)
v(c)(a− b) · x

∑
ν(aν+rν)

[
cν ,η∗0(c

ν)
]
+(α+γ−k)R
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if
∑
ν

(aν + rν)η
∗
0(c

ν)− η∗0(c̃) + (α+ γ − k)

=

〈(
v(c̃), 1

)
,
∑
ν

(aν + rν)
[
cν , η∗0(c

ν)
]
+ (α+ γ − k)R

〉
≥ 0,

∑
ν

aνη
∗
0(c

ν)− η∗0(c) + (α− k) =

=

〈(
v(c), 1

)
,
∑
ν

aν
[
cν , η∗0(c

ν)
]
+ (α− k)R

〉
< 0

and mapping onto 0 otherwise.

Adding the coboundary h ∈ Hom
(
C[z, t]m,Wk ⊗A(Y )

)

h(a,α),(b,β) :=

⎧⎪⎪⎨⎪⎪⎩
ψ
(k)
v(c)(a− b) · x

∑
ν aν [cν ,η∗0(c

ν)]+(α−k)R

for
∑

ν aνη
∗
0(c

ν)− η∗0(c) + α ≥ k,

0 otherwise

does not change the class in T 2
Y (−kR) ⊗Wk (still representing ψ(k)), but

improves the representative from Hom (
R
/R0

,Wk ⊗ A(Y )). It still maps
type-(i)-relations to 0, and moreover

[zrtγ · f(a,b,α,β) − f(a+r,b+r,α+γ,β+γ) = 0]

�→

⎧⎪⎪⎨⎪⎪⎩
(
ψ
(k)
v(c)(a− b)− ψ

(k)
v(c̃)(a− b)

)
· x

∑
ν(aν+rν)[cν ,η∗0(c

ν)]+(α+γ−k)R

for k0 + γ ≥ k

0 otherwise

with k0 = α+
∑

ν(aν + rν)η
∗
0(c

ν)− η∗0(c̃). By definition of ψ
(k)
j and g(k) we

obtain

ψ
(k)
v(c)(a− b)− ψ

(k)
v(c̃)(a− b)

=
∑
ν

(aν − bν) · g(k)(λ
(
v(c)
)
+ μν

(
v(c)
)
− λ
(
v(c̃)
)
− μν

(
v(c̃)
)
, cν)

=
∑
ν

(aν − bν) · g(k)(λν
(
v(c)
)
− λν

(
v(c̃)
)
, cν)

= gd,k(t− t1) with
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d =
∑
ν

(aν − bν) · d(λν
(
v(c)
)
− λν

(
v(c̃)
)
, cν)

=
∑
ν

(aν − bν) ·
(
η̃(cν)− η(cν)

)
=
∑
ν

(aν − bν) ·
(
η̃∗(cν)− η∗(cν)

)
,

and this completes our proof. Indeed, for relations of type (ii) (i.e. r = 0;
γ = 1) we know c = c̃, hence, those relations map onto 0. For relations
of type (iii) (i.e. γ = 0) we can compare the previous formula with the
result obtained in Corollary 6.8: The coefficients coincide, and the monomial

zqtk0−k ∈ C[z, t] maps onto x
∑

ν(aν+rν)
[
cν ,η∗0(c

ν)
]
+(α+γ−k)R ∈ A(Y ).

6.15. It remains to show that the summands ψ(k) of λ∗ are indeed sur-
jective maps from T 2

Y (−kR)∗ to Wk. We will do so by composing them
with auxiliary surjective maps pk : ⊕ε<QA∗ ⊗R C � T 2

Y (−kR)∗ yielding
ψ(k) ◦ pk =

∑
ε<Q g(k)(ε, •). Then the result follows from the first part of

Lemma 6.10.

Let us fix some 2-face ε < Q. Assume that d1, . . . , dm are its coun-
terclockwise oriented edges, i.e. the sign vector ε looks like εi = 1 for
i = 1, . . . ,m and εj = 0 otherwise. Moreover, we denote the vertices of
ε < Q by v1, . . . , vm such that di runs from vi to vi+1 (m+ 1 := 1).

Now pk maps [c, z] ∈M to the linear relation

m∑
i=1

∑
ν

(qi,ν − qi−1,ν) ·
[
cν , η∗0(c

ν)
]
+ (qi − qi−1) · [0, 1] = 0,

where
[c, z] =

∑
ν

qi,ν
[
cν , η∗0(c

ν)
]
+ qi[0, 1]

with
[
cν , η∗0(cν)

]
∈ Ek

i ∩ Ek
i+1 for every qi,ν 
= 0. This relation is automat-

ically contained in ker (
⊕

i L(E
k
i ) → L(E)). Note that only the c ∈ L∗

is important; choosing another z will not change the differences qi − qi−1.
A closer look at the construction and the surjectivity can be taken in [3]
sect. 6. Finally, we apply ψ(k) to obtain

ψ(k)
(
pk(c)

)
=

m∑
i=1

∑
ν

(qi,v − qi−1,v) · g(k)(λ(vi)− λ
(
v(cν)

)
+ μν(vi), cν)
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=
∑
i,v

g(k)(λ(vi)− λ
(
v(cν)

)
+ μν(vi), qi,vc

ν)

−
∑
i,v

g(k)(λ
(
vi+1

)
− λ
(
v(cν)

)
+ μν

(
vi+1

)
, qi,vc

ν)

=
∑
i,v

g(k)(λ(vi)− λ
(
vi+1

)
+ μν(vi)− μν

(
vi+1

)
, qi,vc

ν).

We introduce the path ρi consisting of the single edge di only. Then,
if qiv 
= 0 and w.l.o.g. 〈vi, cν〉 ≥ 〈vi+1, cν〉, the pair of paths μν(vi) and

μν
(
vi+1

)
+ ρi meets the assumption of Lemma 6.10(2) (cf. (i)). Hence, we

can proceed as follows:

ψ(k)
(
pk(c)

)
=
∑
i,v

g(k)(λ(vi)− λ
(
vi+1

)
+ ρi, qivc

ν)

+
∑
i,v

g(k)(μν(vi)− μν
(
vi+1

)
− ρi, qivc

ν)

=
m∑
i=1

g(k)
(
λ(vi)− λ

(
vi+1

)
+ ρi,

∑
ν

qivc
ν

)

=

m∑
i=1

g(k)(λ(vi)− λ
(
vi+1

)
+ ρi, c)

= g(k)
( m∑

i=1

ρi, c

)
= g(k)(ε, c).

Thus, Theorem 6.5 is proven.

7. Example

First let us provide a theorem to describe the situation for dimσ = 3.
We assume σ is smooth in codimension two. Hence, it has an isolated
singularity and dimT 1

Y < ∞, i.e. there are only finitely many R ∈ σ∨ ∩M
with dim

(
V (Q)/1

)

= 0. The second part of the following theorem provides

a combinatorial verification for this fact.
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7.1. Theorem. Let σ ⊂ R3 be a three dimensional cone with smooth two
dimensional faces.

(i) Let R ∈ int (σ∨ ∩M). We define

Q := σ ∩ [R = 1] and Q′ := conv (lattice vertices of Q).

Define σ′ := ConeQ′. Then we denote by Y ′ := TV(σ′) the associated
Gorenstein singularity. If the edge vectors of Q′ are primitive (i.e. σ′

has smooth two dimensional faces), then Y ′ has the same deformation
theory in degree R∗ as Y in degree R.

(ii) There are only finitely many R ∈ σ∨∩M such that dim
(
V (Q)/1

)

= 0.

Proof. (i) This is obvious, since V (Q) ∼= V (Q′).

(ii) Let R ∈ int (σ∨ ∩M). Then Q := σ ∩ [R = 1] is a two dimensional
polytope. We know dimT 1

Y (−R) = dimV (Q) − 1 by (5.4), hence, to
obtain dimT 1

Y (−R) ≥ 1 we need dimV (Q) ≥ 2. Therefore, Q has
to have at least four different components. This is equivalent to Q
having at least four lattice vertices. Now for any four generating rays
of sigma there are at most one R ∈ int (σ∨ ∩M) yielding one on all
four of them.

Let us now assume R ∈ ∂(σ∨ ∩M). If Q has less than three vertices,
we immediately obtain dimV (Q) ≤ 1. Otherwise Q looks like:

Assume Q has at least two lattice vertices. Then R yields 1 on two
rays of σ. Since R ∈ ∂(σ∨∩M), R yields zero on at least one ray of σ.
These conditions fully determine R and since σ is spanned by finitely
many rays there are only finitely many such R.

Now assume Q has only one lattice vertex. If this lattice vertex is a1
or a3, we immediately obtain dimV (Q) = 1. To obtain dimV (Q) > 1
the lattice vertex has to be a2. Let a4 be a ray of σ such that
R(a4) = 0. By the above observation we know that a2 and a4 do
not lie in a common two face of σ. There are only two facets of σ∨

that have an infinite intersection with the hyperplane [a2 = 1], i.e.
those defined by a1 and a3. Hence, the set [a2 = 1] ∩ [a4 = 0] ∩ σ∨ is
bounded and [a2 = 1] ∩ [a4 = 0] ∩ σ∨ ∩M is finite.
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Finally we provide an example to illustrate the whole theory and, in
particular, Theorem 7.1(i). Let N = Z3 be a lattice. Define the cone σ by

σ :=
〈
(0, 0, 1), (1, 0, 1), (2, 1, 1), (1, 2, 1), (1, 4, 2), (0, 1, 2)

〉
⊆ Q3 = NQ.

We choose R := [0, 0, 1] ∈M = Z3 and obtain the following polygon Q:

We obtain the following paths:

d1 =

(
1
0

)
, d2 =

(
1
1

)
, d3 =

(
−1
1

)
,

d4 =

(
−1

2
0

)
, d5 =

(
−1

2
−3

2

)
, d6 =

(
0
−1

2

)
.

Let Q′ be the convex hull of the lattice vertices of Q, consisting of d1, d2, d3

and the dashed line in the picture. The associated Gorenstein singularity
Y ′ = TV(σ′) with σ′ being the cone over Q′ equals the affine cone over the
Del Pezzo surface of degree 8. It would be interesting to know more about
a general geometric relation between the singularities Y and Y ′, i.e. is there
a universal property (depending on R) characterizing the map Y ′ → Y ?

Now we can explicitly describe the ideal J as defined in (2.4): Q equals
its own (and only) 2-face. This yields the following families of polynomials:

g1,k(t) = tk1 + tk2 − tk3 −
1

2
tk4 −

1

2
tk5, k ≥ 1

and

g2,k(t) = tk2 + tk3 −
3

2
tk5 −

1

2
tk6, k ≥ 1.

Additionally, we have the polynomials t4− t5 and t5− t6 for the non-lattice
vertices. We obtain

J =
(
g1,k(t), g2,k(t) | k ≥ 1

)
+ (t4 − t5, t5 − t6).
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By Corollary 6.10 we know that it is enough to consider k ≤ 3. Calculating
modulo the the two last equations and hence, only considering t4, the
homogeneous ideal J definingM⊆ C4 is generated by:

J =
(
t2 + t3 − 2 · t4, t1 − 2 · t3 + t4, t

2
3 − 2 · t3t4 + t24

)
.

We introduce the variables w12 := t1 − t2, w23 := t2 − t3 and w34 := t3 − t4
for the differences ti − tj . Now one can easily see that

J =
(
w23 + 2 · w34, w12 + w23 − w34, w

2
34

)
holds as predicted by Theorem 2.5. Moreover these equations define
M̄ ⊆ C3.

Let us now construct V (Q) as described in (2.2). Since Q has 6 edges
we obtain a description of V (Q) as a subspace of R6.

The polygon Q has two non-lattice vertices, namely a5 and a6. These
vertices are directly connected by edge d5 and together they form a compo-
nent of Q, shown by the dashed line in the picture. This yields the equations
t4 = t5 and t5 = t6 for t ∈ V . From now on we will calculate modulo these
equations and hence, only consider t4.

The remaining two equations are described by the rows of
∑

tid
i = 0.

Since all these equations are linearly independent we obtain that V is a
two-dimensional subspace of R6.

The next step is to compute the Hilbert basis E of σ∨ ∩M . To do this,
we use a program like [5]:

E =
{
R = [0, 0, 1], [6,−2, 1], [1, 0, 0], [0, 1, 0], [2,−1, 1],

[−1,−1, 3], [−1, 1, 1], [0,−1, 2], [−1, 0, 2]
}

Using the elements of E\{R}, we can describe C̃(Q)∨ ∩ M̃ . However, since
we calculate modulo t4 = t5 and t5 = t6 as described above, we will not
denote the η∗(ci) as elements of R6, instead we will consider the evaluation
of η∗(ci) on components of t ∈ V , i.e. in the case of η∗4(ci), η∗5(ci), η∗6(ci) it
is only important to know their sum. This means our η∗(ci) are built up by
the following formula:

η∗(ci) =
[
η∗1(c

i), η∗2(c
i), η∗3(c

i), η∗4(c
i) + η∗5(c

i) + η∗6(c
i)
]
∈ R4.
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i ci v(ci) λci η∗(ci)

1 [6,−2] (0, 1/2) (0, 0, 0, 0, 0,−1) [0, 0, 0, 1]

2 [1, 0] (0, 0) (0, 0, 0, 0, 0, 0) [0, 0, 0, 0]

3 [0, 1] (0, 0) (0, 0, 0, 0, 0, 0) [0, 0, 0, 0]

4 [2,−1] (1/2, 2) (0, 0, 0, 0,−1,−1) [0, 0, 0, 1]

5 [−1,−1] (2, 1) (1, 1, 0, 0, 0, 0) [1, 2, 0, 0]

6 [−1, 1] (1, 0) (1, 0, 0, 0, 0, 0) [1, 0, 0, 0]

7 [0,−1] (1/2, 2) (0, 0, 0, 0,−1,−1) [0, 0, 0, 2]

8 [−1, 0] (2, 1) (1, 1, 0, 0, 0, 0) [1, 1, 0, 0]

Using the Hilbert basis E of σ∨ ∩M we want to describe the affine toric
variety Y as a subvariety of C|E| = C9. To do this, consider the following
exact sequence:

0→ L→ Z9 π→M → 0,

where π is defined by mapping the ei ∈ Z9 to the generators of the Hilbert
basis of σ∨ ∩M , i.e. the matrix

π =

⎛⎝0 6 1 0 2 −1 −1 0 −1
0 −2 0 1 −1 −1 1 −1 0
1 1 0 0 1 3 1 2 2

⎞⎠ .

Let L be the kernel of this matrix. We build up the so called toric ideal

IL :=
(
xl

+ − xl
− | l ∈ L

)
⊆ k[x0, . . . , x8]

and obtain

k[σ∨ ∩M ] ∼= k
[
π(Nn)

] ∼= k[x]/IL .

This yields an inclusion Y = Spec
(
k[σ∨ ∩ M ]

)
⊆ C9. Now we need to

compute the generators of the ideal IL, which can be easily done by using
toric.lib of [6]. The following code will do the calculation needed:

LIB "toric.lib";

ring r=0,(t,z1,z2,z3,z4,z5,z6,z7,z8),dp;

intmat pi[3][9]=

0,6,1,0,2,-1,-1,0,-1,

0,-2,0,1,-1,-1,1,-1,0,

1,1,0,0,1,3,1,2,2;
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pi;

ideal I=toric_ideal(pi,"pt");

def L=mstd(I);

I=L[2];

I;

Note that we chose the variables of the ring according to the description
given in (4.3), i.e. t corresponds to R ∈ M and zi corresponds to ci. We
obtain the following polynomials defining Y :

0 f(e6+e7,e8,0,1) = z6z7 − tz8

1 f(e3+e7,e2+e8,0,0) = z3z7 − z2z8

2 f(e5+e6,2e8,0,0) = z5z6 − z28

3 f(e6,e3+e8,1,0) = tz6 − z3z8

4 f(e3+e5,e8,0,1) = z3z5 − tz8

5 f(e2+e5,e7,0,1) = z2z5 − tz7

6 f(e5,e7+e8,1,0) = tz5 − z7z8

7 f(e3,e2+e6,1,0) = tz3 − z2z6

8 f(0,e2+e8,2,0) = t2 − z2z8

9 f(e2+2e7,e4+e5,0,0) = z2z
2
7 − z4z5

10 f(2e2+e8,e4+e6,0,0) = z22z8 − z4z6

11 f(2e2+e7,e4,0,1) = z22z7 − tz4

12 f(e2+e7,e4+e8,1,0) = tz2z7 − z4z8

13 f(3e4,e1+e7,0,0) = z34 − z1z7

14 f(2e2,e3+e4,1,0) = tz22 − z3z4

15 f(e2+2e4+e7,e1+e5,0,0) = z2z
2
4z7 − z1z5

16 f(e2+e3+2e4,e1+e6,0,0) = z2z3z
2
4 − z1z6

17 f(2e2+2e4,e1,0,1) = z22z
2
4 − tz1

18 f(e2+2e4,e1+e8,1,0) = tz2z
2
4 − z1z8

19 f(4e2+e4,e1+e3,0,0) = z42z4 − z1z3
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We want to compute the liftings F(a,b,α,β) of the f(a,b,α,β) inA(S̄)[Z1, . . . , Zw].
For a given c ∈ L∗, we have to find a representation[

c, η∗(c)
]
=
∑
ν

pν
[
cν , η∗(cν)

]
,

pν ∈ Z≥0. This proves difficult, because we compute the η∗ modulo V ⊥.
It is easier to use Proposition 3.6 instead. If we find a linear combina-
tion

[
c, η∗0(c)

]
=
∑

ν pν
[
cν , η∗0(cν)

]
, we automatically obtain

[
c, η∗(c)

]
=∑

ν pν
[
cν , η∗(cν)

]
with the same coefficients pν ∈ Z≥0. Since σ

∨ is a pointed
cone and we already know a Hilbert basis of σ∨ ∩M this problem is very
easy to solve.

Using the equations t4 = t5 and t5 = t6 we obtain

C(Q)∨ = R4
≥0 + V ⊥/

V ⊥

where V ⊥ is generated by [1, 1,−1,−1] and [0, 1, 1,−2] obtained from the
edge directions of the polygon Q. As introduced in (4.3) we will use this de-
scription of C(Q)∨ for the liftings of the f(a,b,α,β), i.e. the variables t1, . . . , t4
correspond to the coordinates of R4

≥0. One can easily see that the expo-
nents of the ti in an F(a,b,α,β)-term sum up to the exponent of t in the
corresponding term of f(a,b,α,β).

0 F(e6+e7,e8,0,1) = Z6Z7 − Z8t1 − Z8(t3 − t1)

= Z6Z7 − Z8t3

1 F(e3+e7,e2+e8,0,0) = Z3Z7 − Z2Z8 − (t24 − t1t2)

= Z3Z7 − t24 + F8

2 F(e5+e6,2e8,0,0) = Z5Z6 − Z2
8

3 F(e6,e3+e8,1,0) = Z6t1 − Z3Z8 − Z6(t1 − t2)

= Z6t2 − Z3Z8

4 F(e3+e5,e8,0,1) = Z3Z5 − Z8t1 − Z8(t2 − t1)

= Z3Z5 − Z8t2

5 F(e2+e5,e7,0,1) = Z2Z5 − Z7t1 − Z7(t4 − t1)

= Z2Z5 − Z7t4

6 F(e5,e7+e8,1,0) = Z5t1 − Z7Z8 − Z5(t1 − t3)
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= Z5t3 − Z7Z8

7 F(e3,e2+e6,1,0) = Z3t1 − Z2Z6

8 F8 := F(0,e2+e8,2,0) = t21 − Z2Z8 − (t21 − t1t2)

= t1t2 − Z2Z8

9 F(e2+2e7,e4+e5,0,0) = Z2Z
2
7 − Z4Z5

10 F(2e2+e8,e4+e6,0,0) = Z2
2Z8 − Z4Z6 − Z2(t1t2 − t1t4)

= Z2t1t4 − Z4Z6 − Z2F8

11 F(2e2+e7,e4,0,1) = Z2
2Z7 − Z4t1 − Z4(t4 − t1)

= Z2
2Z7 − Z4t4

12 F(e2+e7,e4+e8,1,0) = Z2Z7t1 − Z4Z8 − Z2Z7(t1 − t3)

= Z2Z7t3 − Z4Z8

13 F(3e4,e1+e7,0,0) = Z3
4 − Z1Z7

14 F14 := F(2e2,e3+e4,1,0) = Z2
2 t1 − Z3Z4 − Z2

2 (t1 − t4)

= Z2
2 t4 − Z3Z4

15 F(e2+2e4+e7,e1+e5,0,0) = Z2Z
2
4Z7 − Z1Z5

16 F(e2+e3+2e4,e1+e6,0,0) = Z2Z3Z
2
4 − Z1Z6 − Z3

2Z4(t4 − t1)

= Z3
2Z4t1 − Z1Z6 − Z2Z4F14

17 F(2e2+2e4,e1,0,1) = Z2
2Z

2
4 − Z1t1 − Z1(t4 − t1)

= Z2
2Z

2
4 − Z1t4

18 F(e2+2e4,e1+e8,1,0) = Z2Z
2
4 t1 − Z1Z8 − Z2Z

2
4 (t1 − t3)

= Z2Z
2
4 t3 − Z1Z8

19 F(4e2+e4,e1+e3,0,0) = Z4
2Z4 − Z1Z3.

After reformulating the equations one easily notes that the ideal is indeed
toric. To achieve positive exponents in the ti it was necessary to compute
modulo V ⊥. These liftings together with the equations of J describe a
family contained in

C9 × C4 pr2−→ C4
/C · (1).
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Smoothings of Singularities and Symplectic

Topology

MOHAN BHUPAL and ANDRÁS I. STIPSICZ

We review the symplectic methods which have been applied in the classification of
weighted homogeneous singularities with rational homology disk (QHD) smooth-
ings. We also review the construction of such smoothings and show that in many
cases these smoothings are unique up to symplectic deformation. In addition, we
describe a method for finding differential topological descriptions (more precisely,
Kirby diagrams) of the smoothings and illustrate this method by working out a
family of examples.

1. Introduction

Suppose that (S, o) ⊂ Cn is a normal surface singularity, and let L =
S ∩ S2n−1

ε (0) denote its link. For simplicity, we will always assume in
the following that L is a rational homology 3-sphere, which translates to
the singularity having a resolution graph being a tree with only rational
curves representing the vertices. The singularity induces a contact structure
ξM (the Milnor fillable contact structure) on L, which according to [4] is
unique up to contactomorphism. (For a quick review of some notions of
contact and symplectic topology, see Section 2.) Since a smoothing of
the singularity provides a Stein (and therefore symplectic) filling of the
contact 3-manifold (L, ξM ), under favourable circumstances one can study
differential topological, or even symplectic topological properties of the
smoothings of (S, o) by considering symplectic fillings of (L, ξM ). This line
of arguments was fruitfully applied by Ohta and Ono [20, 21] in finding
relations of smoothings of simple and simple elliptic singularities and fillings
of the corresponding Milnor fillable contact 3-manifolds. Lisca [14] achieved
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a complete classification (up to diffeomorphism) of symplectic fillings of
cyclic quotient singularities, a classification which later was shown in [19]
to be identical to smoothings of the singularities at hand. Further results
along similar lines were found in [1] for quotient singularities.

In a slightly different direction, we can try to classify singularities which
admit smoothings with some fixed topological property. For example, sin-
gularities admitting rational homology disk (QHD for short) smoothings
played a crucial role in the recent construction of exotic smooth structures
on 4-manifolds with small Euler characteristic [10, 24, 27, 30]. In fact, these
constructions led to the discovery of simply connected minimal surfaces of
general type with pg = 0 andK2 = 1, . . . , 4 [13, 25, 26]. These developments
motivated our study of singularities with QHD smoothings. Combinatorial
constraints of such singularities were found in [31], and a complete clas-
sification of the resolution graphs have been achieved in [2] for weighted
homogeneous singularities.

The common theme of most of these works can be summarized as follows.
Suppose that X is a symplectic filling of (L, ξM ) (for example, X is a
smoothing of the singularity) and find a symplectic manifold Z which is
a strong concave filling of (L, ξM ). Then the filling X can be symplectically
glued to Z, resulting in a closed symplectic 4-manifold R. Under some
restrictions on Z (which in turn pose restrictions on the singularity), it can
be shown that R is a rational surface, hence can be given as a repeated blow-
up of the complex projective plane CP2. Conversely, for an appropriate
compatible almost-complex structure, in R we can find almost-complex
(−1)-spheres, which we can sequentially blow down and arrive at CP2 at
the end of the procedure. Knowledge about the topology of Z (and, in
particular, symplectic surfaces and almost-complex curves in it) restricts the
possible positions of the (−1)-curves considerably; hence, under favourable
circumstances, we can show that X (which is the complement of Z in R)
must be the complement of some well-described configuration of curves in
some blow-up of the complex projective plane. This method often provides
strong constraints, and can sometimes even determine the (symplectic)
topology of X.

We will demonstrate the power of this method by recovering a stan-
dard result for cyclic quotient singularities, and prove a special case of the
main result of [2] (involving less combinatorics). Finally, we will deal with
some lose ends left open in [2]. We give a unified way of constructing the
QHD smoothings of the weighted homogeneous singularities discussed in [2].
(Constructions of such smoothings were already given in [31, 33]; here we
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explicitly describe configurations in blown-up projective planes and use this
description to identify the fillings.) To demonstrate our method, we show
that in many cases the QHD symplectic filling (and hence the QHD smooth-
ing) is ‘symplectically unique’. More precisely, we will show

Theorem 1.1. Suppose that Γ is one of the graphs of Figures 1(a), (b),
(c), (d), (e), (f) or (g), that is, Γ belongs to one of the families W, N
orM. Suppose furthermore that W1, W2 are two minimal weak, symplectic
QHD fillings of the Milnor fillable contact structure on the link YΓ of the
singularity (SΓ, o). Then there is a diffeomorphism f : W1 → W2 such
that the pull-back f∗(ω2) of the symplectic form ω2 on W2 is deformation
equivalent to the symplectic form ω1 of W1.

Finally, using the description of the smoothings as complements in ra-
tional surfaces, we show how to derive smooth topological presentations for
them. In particular, we describe a method which produces a Kirby dia-
gram for the smoothing at hand. The method is illustrated by a family of
examples worked out in detail.

The paper is organized as follows: In Section 2 we review the main
ingredients we take from symplectic topology to study topological properties
of smoothings. We also reprove some old (and some more recent) results
using these techniques. Section 3 is devoted to a unified treatment of the
existence of QHD smoothings of all weighted homogeneous singularities
admitting such smoothings. In Section 4 we use the results of [21] (and
modify some ideas from [2]) to show that in many cases the QHD smoothing
is unique up to symplectic deformation. Finally, in Section 5, we provide
Kirby diagrams for some of the smoothings found in earlier sections.

Acknowledgements. AS was supported by OTKA NK81203 and by
Lendület program. Both authors acknowledge support by Marie Curie TOK
project BudAlgGeo.
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2. Symplectic Techniques

2.1. Symplectic and contact preliminaries

Suppose that Y is a closed, oriented 3-manifold. The oriented 2-plane field
ξ ⊂ TY is called a contact structure on Y if there is a 1-form α ∈ Ω1(Y )
with α∧dα > 0 satisfying ξ = kerα. The link of a normal surface singularity
admits a natural contact structure: consider the 2-plane field of complex
tangencies along the link. In fact, by [4] this structure is unique (up to
contactomorphism), and is called the Milnor fillable contact structure on
Y (provided Y can be presented as the link of a singularity). A 2-form
ω ∈ Ω2(X) on an oriented 4-manifoldX is called a symplectic form if dω = 0
and ω∧ω > 0. Suppose now that (X,ω) is a compact, symplectic 4-manifold
with boundary ∂X = Y , and let ξ be a contact structure on Y . We say that
(X,ω) is a (weak) filling of (Y, ξ) if ω|ξ > 0. The filling is strong if ω is exact
near ∂X with ω = dα such that kerα|Y = ξ. Obviously, a strong filling is
a weak filling. A filling (X,ω) of (Y, ξ) is minimal if there is no embedded
sphere in X with homological square (self-intersection) being equal to −1.
If Y is a rational homology sphere (that is, H∗(Y ;Q) = H∗(S3;Q)) then any
weak filling (X,ω) admits a deformation (X,ω′) which is a strong filling.

Suppose now that the contact 3-manifold (Y, ξ) is given as the link of
a normal surface singularity (S, o). It is not hard to see that a smoothing
of (S, o) is a minimal (strong) filling of (Y, ξ). Therefore when studying
smoothings of singularities it is sometimes profitable to consider the slightly
modified problem of studying the minimal fillings of the Milnor fillable
contact structure on the link.

In many cases it is simpler to study closed (symplectic) 4-manifolds as
opposed to ones having boundary. By constructing a symplectic cap for
(Y, ξ), that is, a symplectic 4-manifold (W,ωW ) with the property that
∂W = −Y , and that ω and ξ are compatible as in the case of a strong
filling, any strong filling (X,ω) can be embedded into a closed symplectic
4-manifold: consider Z = X ∪Y W and glue the symplectic structures along
Y as described in [8]. (The cap is also called a strong concave filling of
(Y, ξ).)

Remark 2.1. We point out that the gluing scheme given in [8] applies for
strong fillings, while no general gluing theorem is known for weak fillings.
Another fact is that any contact 3-manifold admits a cap (i.e. a strong
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concave filling), while the existence of a (convex) filling is an important
property of the contact 3-manifold, and in particular implies that it is tight.
Notice also that, although in many cases the cap can be chosen to admit a
holomorphic structure, even by taking (X,ω) to be a Stein filling (provided,
eg. by a smoothing of the singularity if (Y, ξ) is a link of a singularity)
we cannot glue in general the convex and the concave fillings within the
holomorphic category. The flexibility of symplectic and almost-complex
structures therefore can be exploited in studying the (symplectic) topology
of holomorphic objects such as smoothings of singularities.

Our study of fillings relies on the following fundamental theorem due to
McDuff.

Theorem 2.2 (McDuff, [16, Theorem 1.4]). Let (Z, ω) be a closed sym-
plectic 4-manifold. If Z contains a symplectically embedded 2-sphere S of
self-intersection number 1, then Z is a rational symplectic 4-manifold. In
particular, Z becomes the complex projective plane after blowing down a
finite collection of symplectic (−1)-curves away from S.

Our strategy for examining the topology of the fillings of (Y, ξ) therefore
will be the following. Suppose that we can construct a convenient cap for
(Y, ξ) in which we locate some symplectic 2-manifolds, one of which is a
sphere S of self-intersection 1. We then glue the filling (X,ω) to the cap
symplectically, and apply McDuff’s Theorem 2.2 to the resulting closed
symplectic 4-manfold Z. It implies that for any almost-complex structure
there must be a (−1)-curve in the complement of S. Choosing the almost-
complex structure in a way that the symplectic submanifolds in the cap
become holomorphic, we arrive at a combinatorial problem as to where the
(−1)-curves may be located. Notice that by assuming that the filling (X,ω)
is minimal, we require that no (−1)-curve disjoint from the cap can exist
in Z. A number of simple observations (listed in [2, Section 2]) narrow
the possibilities of the intersection patterns of the potential (−1)-curves,
leading to some potential possibilities. When we sequentially blow down all
the (−1)-curves, we should arrive at CP2, with S being a projective line in
it. The curves intersecting S (which therefore are not in its complement)
should become symplectic submanifolds of CP2, hence their intersection
number with S dictates their self-intersections. The resulting combinatorial
problem (in some cases) can be solved, providing partial information about
the topology of X. Under favourable circumstances this information is
enough to show, for example, that certain singularities do not admit fillings
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which have the rational homology of the 4-disk. This program has been
carried out in [2] for weighted homogeneous singularities.

Notice that the method, as it is, only provides obstructions, and one
needs constructive methods to show that in some cases certain types of
fillings (or, for singularities, certain smoothings) exist. We will show a
method for such constructions in the next section.

2.2. A simple example

To demonstrate the effect of the above strategy, we consider a simple (and by
now classical) theorem of McDuff [16, Theorem 1.7] (extended by Lisca [14])
and provide a relatively short proof in this language. (We do not claim
that this proof relies on ideas different from the ones given by McDuff and
Lisca—the presentation of the same ideas is, however, slightly different.)

Let (Sp, o) be the cyclic quotient singularity which can be given by the
resolution graph containing a single (−p)-framed vertex and no edges. (We
assume that p ≥ 2 is an integer.) Let (Lp, ξM,p) denote the link of (Sp, o),
together with its Milnor fillable contact structure. The 3-manifold Lp is
then diffeomorphic to the lens space L(p, 1). Suppose that X is a minimal
weak symplectic filling of (L, ξM ). Let Dp denote the total space of the
disk bundle of Euler number −p over the sphere S2. (Notice that Dp is
the plumbing 4-manifold defined by the minimal resolution graph of (Sp, o),
hence ∂Dp is diffeomorphic to Lp.)

Theorem 2.3 (McDuff, [16]; cf. also Lisca, [14]). If p 
= 4 then X is
diffeomorphic to Dp, and for p = 4 the filling X is either diffeomorphic to
D4 or to the complement CP2 − Q of a quadratic curve Q in the complex
projective plane CP2.

Proof. First we construct the cap Zp for the given singularity. Indeed,
consider the Hirzebruch surface Fp, admitting a zero-section Σ0 of self-
intersection −p and an infinity section Σ∞ of self-intersection p. The zero-
section Σ0 therefore can be identified symplectically (after possibly rescal-
ing) with the resolution of (Sp, o), hence the complement of a convex neigh-
bourhood of Σ0 in Fp provides a cap for (Lp, ξM,p). Notice that with this
choice the cap contains a rational curve of self-intersection p. Repeatedly
blowing this curve up p−1 times results in Zp, which contains a chain of ra-
tional curves with self-intersections +1,−1,−2, . . . ,−2, with exactly p − 2
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(−2)’s in this sequence. Now gluing X to Zp we get a closed symplectic
4-manifold which contains a symplectic sphere L of square +1, hence by
McDuff’s Theorem 2.2 we get that X ∪ Zp is the blow-up of CP2. Next we
would like to analyze where the (−1)-curve in (X ∪Zp)−L can be located.
Choose a tame almost complex structure J for which all of the symplec-
tic curves of Zp listed above are J-holomorphic. Assume that J is generic
among such almost complex structures. Since we can perform the blow-
downs in the complement of the (+1)-sphere L, at the end of this process
all (−2)-curves must be eventually blown down, and the (−1)-curve inter-
secting L (which is therefore not in the complement of L) should turn into
a symplectic surface in CP2 intersecting L exactly in one point. There-
fore it will become a projective line, implying that its self-intersection must
change from −1 to +1 in the course of the blow-downs. Notice first that
in order for the (−2)-curves to be blown down, a (−1)-curve must hit the
chain of (−2)’s. It is also easy to see that it can happen only at the ends of
the chain of (−2)’s, otherwise after three blow-downs we find a symplectic
(hence homologically nontrivial) sphere with square 0 and disjoint from L,
which would contradict the fact that b+2 (X ∪ Zp) = 1. If the (−1)-curve
E hits the chain in its far end (in the end disjoint from the (−1)-curve in-
tersecting L), then it starts a chain reaction of repeated blow-downs, with
all (−2)-curves disappearing and the (−1)-curve D intersecting L becoming
a 0-curve. Since D eventually becomes a representative of the generator
of H2(CP

2;Z), a further (−1)-curve must intersect it, which can be blown
down and that drives the intersection of D up to 1.

There is, however, another potential choice for the (−1)-curve: we can
choose it to intersect the (−2)-curve which intersects D. This choice again
starts a chain reaction of blow-downs, and after blowing down all the (−2)-
curves the self-intesection of D will go from −1 to p − 3. Since it must be
equal to 1 after all the blow-downs, we either have p = 4 (and then we found
that X is a QHD), or p = 3, in which case the starting and ending curves
of the chain of (−2)’s coincide, and we are in the previous case.

Since for p 
= 4 the above argument shows uniqueness, and Dp is a
filling of (Lp, ξM,p), we get that X and Dp are diffeomorphic. For p = 4
the argument given above provides two possibilities (which differ in b2), and
since D4 and CP2 −Q are both fillings of (L4, ξM,4), the proof is complete.
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Remarks 2.4. (a) After locating the (−1)-curves, the diffeomorphism type
of X can be determined via a direct Kirby diagrammatic argument as well;
this example will be worked out in detail in Section 5.

(b) There is another way to reduce the self-intersection of the curve Σ∞
in Fp − Σ0 from p to 1: blow up the curve in p − 1 distinct points. The
resulting p− 1 curves D1, . . . Dp−1 all become (+1)-curves intersecting each
other in one point after the blow-down procedure. Therefore either there is
a (−1)-curve E intersecting all of them, and then for each i there is a further
Ei intersecting only Di (in which case after the blow-downs all Di will pass
through the same point), or there are (−1)-curves E1, E2, E3 intersecting
exactly two Dj ’s, resulting in the exceptional filling for p = 4. Of course,
in the blow-up procedure we might also mix the two strategies for blowing
up Σ∞, resulting in similar but slightly different combinatorial problems,
providing the same result.

2.3. Starshaped graphs and QHD smoothings

The classification question of singularities admitting QHD smoothings has
a long history. In [32] examples of such singularities have been given, and
in fact J. Wahl had a conjectural list of these singularities back in the 80’s.
(A reference to this ‘secret list’ can be found in [5].) More recently, relying
on Donaldson’s diagonalizability theorem and some intricate combinatorics,
strong constraints on the resolution graphs of singularities admitting QHD
smoothings (together with many examples) have appeared in [31]. The ap-
plication of the symplectic topological scheme of Section 2.2 then provided
further obstructions for the existence of QHD smoothings, eventually lead-
ing to the complete resolution of the question for weighted homogeneous sin-
gularities [2]. (Curiously, this classification turned out to be almost identical
to the conjectured list of Wahl.) The combinatorial argument, completing
the symplectic topological proof is rather involved in [2]. To indicate the
main ideas, below we verify a weaker result with the same techniques, but
with significantly simpler combinatorial issues. It already shows an interest-
ing feature of weighted homogeneous singularities with QHD smoothings:
the framing of the node (the central vertex) cannot be very negative.

Theorem 2.5. Suppose that Γ is a negative definite plumbing graph of
spheres, with all framings ≤ −2. If Γ is starshaped with three legs, and
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the node (or central vertex) has framing ≤ −10 then the corresponding
singularity admits no QHD smoothing.

Proof. Let (SΓ, o) denote a normal surface singularity with resolution
graph Γ. By assumption Γ is a starshaped plumbing graph (with three
legs and central framing ≤ −10). Recall the definition of the dual graph Γ′

of a starshaped graph Γ. To this end, let Γ be a starshaped graph with s
legs �1, . . . , �s and with central framing −b. Suppose that the framing coef-
ficients along the leg �i are given by the negatives of the continued fraction
coefficients of ni

mi
> 1. Consider then the ‘dual’ graph Γ′ which is starshaped

with s legs �′1, . . . , �′s, central framing b− s, and the framings along the leg
�′i are given by the negatives of the continued fraction coefficients of ni

ni−mi
.

Returning to the proof of the theorem, let Γ′ denote dual graph of the
given graph Γ. Since the central framing of Γ′ can be computed from the
number of legs and the central framing of Γ, it follows that the central
framing of Γ′ is at least 7. Blow up each intersection of the central curve
with the three legs twice, and then repeatedly blow up the central curve
in such an intersection until its framing becomes +1. The resulting three-
legged starshaped graph Γ′′ then has the property that the framing of its
central vertex is +1, while the framings of the three vertices connected to
the central one (corresponding the three curves which will be denoted by
D1, D2 and D3) are all −1. In addition, the framings of the curves F1,
F2, F3 intersecting D1, D2 and D3 are all equal to −2. The graph Γ′′

gives rise to a plumbing manifold Z, which admits a symplectic structure
providing a concave filling for (LSΓ

, ξM ). Suppose now that (SΓ, o) admits
a QHD filling X. As before, symplectically gluing X and Z we get a closed
symplectic manifold containing a symplectic sphere L of self-intersection +1,
hence the repeated blow-down of X∪Z in the complement of L transforms it
to CP2. Since X is a QHD smoothing, the symplectic 4-manifold X ∪Z (for
a tame almost-complex structure generic among those for which the curves
in the cap Z are all almost-complex) contains three (−1)-curves disjoint
from L and from each other. Let these (−1)-curves be denoted by E1, E2,
E3.

Suppose first that one of the (−1)-curves, say E1, intersects one of
the Di, say D1. Then E1 cannot intersect any other curves apart from
another Di, since after blowing it down and the curve it intersects, the self-
intersection of D1 already went up to 1, and this would increase to at least
2 when F1 collapses to a point. Since the Di will eventually become lines
in CP2, this would be a contradiction. If E1 also intersects both D2 and
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D3, then after blowing it down all the Di will pass through the same point,
hence E2 and E3 can intersect only one leg each, hence nothing will start
the blow-down sequence on the remaining third leg. If E1 intersects only
one further curve, say D2, then E2 and E3 should intersect two legs each
(the first and third and the second and third), but this forces D1 and D2

to intersect each other after all the blow-downs in 2 points, a contradiction.
Finally, it can happen that E1 intersects only D1 and no further curves. In
this case E2 and E3 are responsible for D1 to intersect D2 and D3 after the
blow-downs, hence E2 should intersect the first and second, while E3 the
first and third leg. Therefore after completing all blow-downs, the Di will
all pass through a single point, and reversing the last step, we have three
0-curves and a (−1)-curve G passing through them. Adding E1 to D1, we
see that G (which has to be blown up twice to become disjoint from D2 and
D3) will become F1. The curve F1 has framing −2, but already the blow-
ups so far drove the framing of G to −3, and in the course of the blow-up
sequence none of the framings will increase. This observation provides the
desired contradiction.

Assume now that all Ei are disjoint from the Di. Since the curves Di

will intersect each other after the blow-down procedure is complete, we must
have that E1 intersects two curves in two different legs, and E2 with the
same property. Now E3 cannot intersect two legs, since then there would
be a cycle of holomorphic curves in the complement of L, which contradicts
[2, Corollary 2.4]. So E3 intersects only one leg. Blow down repeatedly E3

and the further (−1)-curves created in this procedure. It must stop before
it reaches the curves intersected by E1 or E2, since otherwise by one further
blow-down these curves become 0-curves in the complement of L. So at some
point we reach a stage when there are only two (−1)-curves present. Since
no Ei intersects the Di, at the end all three Di must pass through the same
point, hence the ultimate blow-down is a (−1)-curve intersecting each Di,
which all have self-intersection 0. Reversing the procedure, each Di must be
blown up one more time, giving three disjoint (−1)-curves, which will persist
all the way through, contradicting the fact that this reversed procedure
leads to a configuration with only two (−1)-curves. This argument therefore
shows that no appropriate collection {E1, E2, E3} of (−1)-curves can exist,
therefore our assumption on the existence of a QHD smoothing led to a
contradiction.

Remark 2.6. Similar, but more involved analysis verifies the same result
as Theorem 2.5 with the bound −10 substituted with −5. Notice that there
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are examples of singularities with central framing −4 which admit QHD
smoothings (cf. Figure 1(a)), hence the version of Theorem 2.5 with the
value −5 is, in fact, sharp.

In fact, a similar technique provides an extension of Lisca’s result [14,
Corollary 1.2(b)]:

Theorem 2.7. Suppose that the starshaped plumbing graph Γ with three
legs admits the property that all framings are ≤ −5 and the central framing
is ≤ −10. Then the Milnor fillable contact structure on the boundary
of the plumbing along Γ admits a unique minimal symplectic filling (up to
symplectic deformation). In particular, the smoothings of the corresponding
singularity are all diffeomorphic.

Proof (sketch). It is easy to see that the conditions imply that the central
framing of the dual graph Γ′ is at least 7, and all other framings are
either −2 or −3. In addition, between two (−3)-framed curves there are
at least two (−2)-framed curves and each leg ends with at least three (−2)-
framed curves. As before, blow up the central curve again until its framing
becomes +1, and all curves intersecting it have framing −1, resulting in the
graph Γ′′. Let ZΓ′′ denote the corresponding plumbing, and suppose that
X is a minimal symplectic filling of the Milnor fillable contact structure at
hand. Once again, we try to locate the (−1)-curves in the union X ∪ ZΓ′′ .
Let the (−1)-curves be denoted by E1, . . . , Ek. (Since now we have no
restriction on the topology of X, we do not have any a priori restriction
on k.) It is easy to see that a curve Ei cannot intersect a (−2)-curve
which is between two (−3)-curves, and a (−3)-curve cannot be intersected
by two Ei’s. In a similar vein, every (−3)-framed curve must be intersected
by one of the Ei’s, and since no (−1)-curve can intersect three other curves
(unless those are the Di intersecting the (+1)-curve L), we get that none of
the Ei can intersect two (−3)-framed curves.

This shows that each (−3)-curve is intersected by a unique Ei, and to
initiate the blow-down procedure, the (−2)-curves on the ends of the legs
should be intersected by some Ej ’s as well. This means that after all these
blow-downs, all curves (except the Di) are blown down, and the Di have
self-intersection 0. Therefore a final (−1)-curve is needed, which passes
through all Di exactly once.

The above combinatorial analysis shows that there is a single possibility
for the position of the Ei, hence there is a single possibility to recover the
configuration, and therefore we can construct X (as the complement of the
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plumbing ZΓ′′), and then the arguments of the proof of Theorem 1.1 (given
in Section 4) apply and imply the claimed uniqueness.

Remark 2.8. Once again, by examining more cases, the assumption on the
central vertex can be relaxed to ≤ −5.

The main result of [2] provides a complete classification of resolution
graphs of weighted homogeneous singularities which admit QHD smooth-
ings:

Theorem 2.9 (Bhupal–Stipsicz, [2]). Suppose that Γ is a negative definite,
starshaped plumbing graph. There is a singularity with resolution graph Γ
which admits a QHD smoothing if and only if Γ is one of the graphs in the
families QHD3 and QHD4 given by Figures 1 and 2.

The obstruction for the existence of a QHD smoothing follows along
the same line outlined in Theorem 2.5 (and these arguments for various
subcases are given in detail in [2]), while the existence of the appropriate
smoothings can be derived by applying a result of Pinkham, together with
appropriate embeddings of curve configurations into rational surfaces. (The
existence results were already verified partly by other means in [32, 33].)
The next section is devoted to recalling Pinkham’s result, and to listing all
the necessary embeddings.

3. Existence of Smoothings

The algebro-geometric result guaranteeing the existence of a QHD smooth-
ing rests on an (appropriately modified) result of Pikham, see [29, 31].

Theorem 3.1 ([29, Theorem 6.7], cf. also [31, Theorem 8.1]). Suppose that
Γ is a negative definite starshaped graph. Let Z be a smooth projective
rational surface, and D ⊂ Z a union of smooth rational curves whose
intersection graph is Γ′, the dual of Γ. Assume

rkH2(D;Z) = rkH2(Z;Z).

If Γ is the graph of a rational singularity, then one has a QHD smoothing of
a rational weighted homogeneous singularity with resolution dual graph Γ,
and the interior of the Milnor fibre is diffeomorphic to Z −D.
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Fig. 1. The graphs defining the class QHD3 of plumbing graphs. We assume that
p, q, r ≥ 0. Graphs of (a) form the class W, while graphs of (b) and (c) the class N . The

graphs given by (d), (e), (f) and (g) form the class M

Fig. 2. The graphs (with p ≥ 0) defining the class QHD4 of plumbing graphs

In the following (resting on the above theorem) we prove that all the
graphs listed in Theorem 2.9 do, in fact, correspond to singularities with
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QHD smoothings. Once again, this fact was mainly proved in [31] (and
referred to in [2]); here we give a proof which relies on similar constructions
for all cases.

We start with the singularities described by the resolution graphs of
Figure 1. (Notice that all these graphs are taut in the sense of Laufer,
hence by [12] the resolution graph, in fact, determines the singularity.)
In [31] (and then, following this convention, in [2]) the family of graphs
given by Figure 1(a) is denoted by W, the family given by the graphs of
Figures 1(b) and (c) by N , while the graphs of Figures 1(d), (e), (f) and (g)
comprise the familyM. In the following we will show that graphs in each
family give rise to singularities with QHD smoothings.

The family W. Graphs in the family W were defined in [31, Figure 3] (cf.
[32] for the first appearance of these plumbing trees); we depicted the graphs
of this family in Figure 1(a). For the dual plumbing, see Figure 3(a). Adding

Fig. 3. The dual graphs, the (−1)-curves and the configuration of curves after
successively blowing down in the family W. (The graphs in W are shown in Figure 1(a))

three (−1)-curves to the duals as shown in (b), successive blow-downs results
in the configuration shown in Figure 3(c) in the complex projective plane.
Since the diagram depicts four generic lines in the complex projective plane,
the existence of such a configuration is obvious. Blowing back up we get the
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dual configuration Γ′ in CP2#
(
|Γ′|−1

)
CP2, which according to Theorem 3.1

provides the existence of the rational homology disk smoothing. The same
statement has been verified in [32] and in [31, Example 8.4].

The family N . Figure 4(a) shows the dual graphs of the triply infinite
family of graphs forming N , the family given by the graphs of Figures 1(b)
and (c). (Notice that the difference between the p ≥ 0 and p = −1 case,

Fig. 4. The duals, the (−1)-curves and the configuration of curves after successively
blowing down in the family N . (The graphs in N are shown in Figures 1(b) and (c).)
When passing from (b) to (c) above, we blow down the horizontal (−1)-curve and one

further (−2)-curve to get the (+1)-curve depicted by the horizontal line in (c)

which is apparent in the graphs of Figures 1(b) and (c), disappears when we
pass to the duals.) The result of one blow-up (shown in Figure 4(b)) and
then two blow-downs is shown in (c), where the parabola is tangent to the
horizontal line. From this configuration (after successively blowing down
the (−1)-curves, starting with the dashed ones) we get a the configuration
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of a conic and three lines in CP2. When p = −1, the vertical (−1)-curve
is missing in (c), and correspondingly the final configuration consists of
two lines and a conic. It is elementary to give examples of a conic, a
tangent line to it, and two further lines intersecting according to the diagram
in Figure 4(d). The reverse of the blow-down procedure, together with
Pinkham’s Theorem 3.1 shows the existence of the rational homology disk
smoothing. Once again, a similar argument for the existence of the rational
homology disk smoothing has been presented in [31, Example 8.4].

The familyM. As usual, Figure 5(a) depicts the duals of the graphs in the
triply infinite familyM, the family defined by the diagrams of Figures 1(d),
(e), (f) and (g). Notice that the various degenerations p = −1, r = −1 or

Fig. 5. The dual graphs, the (−1)-curves and the configuration of curves after
successively blowing down in the family M. (The graphs in M are shown by

Figures 1(d), (e), (f) and (g).) The horizontal (+1)-line is triply tangent to the cubic
curve (in (c)) and to the one admitting a self-intersection (in (d))

both (shown in Figure 1) are absorbed by the dual graphs. (For r = −1
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the vertical −1, together with the (−2)’s hanging off of it are missing, for
p = −1 the (−2)-curves attached to the horizontal +1 are missing, while
for p = r = −1 both these groups of curves are not there.) Successively
blowing down (−1)-curves (starting with the dashed ones) results in the
configuration given in (d) (again, for p = −1 or r = −1 a line is missing,
and for p = r = −1 two lines are not there). A cubic curve with a transverse
double point—for example the one given by

{
y2z−x3−x2z = 0

}
—together

with a tangent at one of its inflection points (e.g., {z = 0} intersecting it at
[0 : 1 : 0]) and the two further lines {x = 0} and {x+ y = 0} provide such a
configuration. Once again, this argument shows the existence of the rational
homology disk filling, which was already verified in [31, Example 8.3].

For future reference, let the cubic curve {y2z−x3−x2z = 0} be denoted
by C, while the lines {z = 0}, {x = 0} and {x + y = 0} by Lz, Lx, L1,
respectively.

The family of Figure 1(h). As before, Figure 6 provides the diagrams for
the graphs, their duals, and for the (−1)-curves. The nodal cubic curve C
with the tangent Lz at one of its inflection points, together with L′

1 (given
by the equation {x+ z = 0}, intersecting the cubic curve once transversally
at the point [0 : 1 : 0] and once tangentially at [−1 : 0 : 1]), and the line
Ly joining [−1 : 0 : 1] with the node [0 : 0 : 1], provide a configuration of
curves shown by Figure 6(d). As before, repeated blow-ups then embeds

the curves intersecting according to Γ′ into CP2#
(
|Γ′| − 1

)
CP2, which (by

Pinkham’s Theorem) verifies the existence of a QHD smoothing.

The family of Figure 1(i). The graphs, their duals and the possible
locations of the (−1)-curves in the family given by Figure 1(i) are shown in
Figure 7. Consider the cubic C and the tangent Lz to it. Let M denote the
tangent line {y−(x+ 8

9z)
√
3i = 0} passing through another inflection point

[− 4
3 : −i 4

3
√
3
: 1] of C =

{
y2z − x3 − x2z = 0

}
. (It is not hard to see that

the further two inflection points of C are [− 4
3 : ±i 4

3
√
3
: 1].) Having these

curves in CP2, the rest of the argument is identical to the previous cases: the
appropriate blow-ups embed the dual graphs in the right number of blow-
ups of CP2 and then an application of Pinkham’s Theorem 3.1 completes
the argument.
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Fig. 6. The one-parameter family of graphs of Figure 1(h), their duals, the blow-down
sequence and the final configuration

The family of Figure 1(j). The diagrams of Figure 8 show the graphs,
their duals and the locations of the (−1)-curves for the cases given by
Figure 1(j). The cubic curve C with a transverse double point and its
tangent Lz at one of its inflection points together with the line L′

1 (given by
the equation {x + z = 0}) gives the configuration depicted in Figure 8(d).
Repeated blow-ups and an application of Theorem 3.1 then verifies the
existence of a QHD smoothing for the singularities given by the graphs
under consideration.

With this last case we are finished with the analysis of the graphs of
Figure 1, and we start examining starshaped graphs with four legs, given by
Figure 2. The existence of QHD smoothings for singularities with resolution
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Fig. 7. The one-parameter family of graphs of Figure 1(i), their duals, the location of
the (−1)-curves and finally he required configuration of curves in the complex projective

plane

graph shown in that Figure has been verified in [31] and (by different
methods) in [33].

The family of Figure 2(a). The graphs and their duals, and the two
possible locations of (−1)-curves in this case are shown in Figure 9. In
order to show that curves intersecting each other according to Γ′ can be

embedded in CP2#
(
|Γ′| − 1

)
CP2, we consider the usual singular cubic

curve C and its tangent Lz together with the cubic C1 given by the equation
f1(x, y, z) = y2z +

(
1 − i

√
3
)
xyz + 4

9

(
3 − i

√
3
)
yz2 + 1

2

(
− 1 + i

√
3
)
x3 +(

− 2 + i
√
3
)
x2z − 4

9

(
− 3 + i

√
3
)
xz2. This curve is a rational nodal cubic
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Fig. 8. The one-parameter family of graphs of Figure 1(j), their duals, the (−1)-curves
and the final configuration in CP2

with a node at [ − 4
3 : −4

9 i
√
3 : 1]. The line Lz and the curves C and C1

are pairwise triply tangent at [0 : 1 : 0]. Also the curves C and C1 intersect
at each of the points [0 : 0 : 1] and [ − 4

3 : −4
9 i
√
3 : 1] with intersection

multiplicity 3. Let N be the line {y − i
√
3(x + 8

9z) = 0}; it is triply

tangent to C at [− 4
3 : −4

9 i
√
3 : 1] and intersects C1 at the same point with

intersection multiplicity 3. Therefore the configuration of curves depicted
by Figure 9(d) is verified to exist, from which the appropriate sequence of
blow-ups verifies the existence of the embedding of curves with intersection
pattern given by Figure 9(b). A simple count of blow-ups shows that the

resulting configuration is in CP2#
(
|Γ′| − 1

)
CP2, hence the existence of the

smoothing then follows from Pinkham’s Theorem 3.1.
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Fig. 9. The one-parameter family of 4-legged graphs of Figure 2(a), the duals, and the
two possible configurations of (−1)-curves. In (e) we depict the curve configuration after
the blow-downs—this configuration is the same for the two choices of (−1)-curves shown

by (c) and (d)

The family of Figure 2(b). The graphs, their duals and the (−1)-curves
are shown in Figure 10. The curves Lz and C are as before; let C2 be the
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Fig. 10. The one-parameter family of 4-legged graphs of Figure 2(b), the duals, the
(−1)-curves and the configuration in CP2

cubic curve given by the equation f2(x, y, z) = y2z + 2xyz + 2yz2 − 2x3 −
4x2z− 2xz2. The curve C2 is a rational nodal cubic with a node at [−1 : 0 :
1], and Lz, C and C2 are pairwise triply tangent at [0 : 1 : 0]. Also, C and C2

intersect at [0 : 0 : 1] with intersection multiplicity 4 and at [−1 : 0 : 1] with
intersection multiplicity 2. Consider furthermore L′

1 given by the equation
{x + z = 0}. It passes through the point [0 : 1 : 0] and is tangent to C at
[−1 : 0 : 1]. Therefore the existence of the configuration of curves depicted
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by Figure 10(d) is verified, from which the appropriate sequence of blow-ups
verifies the existence of the embedding of curves with intersections given by
Figure 10(b). The existence of the smoothing of a (weighted homogeneous)
singularity with resolution graph given by Figure 10(a) then follows from
Pinkham’s Theorem 3.1.

The family of Figure 2(c). The graphs, their duals and the (−1)-curves
are shown in Figure 11. As before, let Lz be the line {z = 0} in CP2 and let

Fig. 11. The one-parameter family of 4-legged graphs of Figure 2(c), the duals, the
(−1)-curves and finally the curve configuration in CP2 we get after the blow-downs
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C be the usual cubic given by f(x, y, z) = y2z−x3−x2z. Let C3 denote the
cubic given by the equation f3(x, y, z) = y2z+ 1

2xyz+yz2− 9
8x

3−2x2z−xz2.
The curves C and C3 are rational nodal cubics with nodes at [0 : 0 : 1] and

[ − 2
3 : −1

3 : 1], respectively. It is easy to check that both C and C3 are
triply tangent to Lz at the point [0 : 1 : 0] and are also triply tangent to
each other at [0 : 1 : 0], and have intersection multiplicity 6 at the point
[0 : 0 : 1]. Therefore the existence of the configuration of curves depicted by
Figure 11(d) is verified, from which the appropriate sequence of blow-ups
shows the existence of the embedding of curves with intersections given by

the graph Γ′ of Figure 11(b) in CP2#
(
|Γ′| − 1

)
CP2. The existence of the

smoothing of a (weighted homogeneous) singularity with resolution graph
of Figure 11(a) then follows from Pinkham’s Theorem 3.1.

4. On Uniqueness of Certain Symplectic Fillings

Using the strategy outlined in Section 2, in this section we will prove The-
orem 1.1, i.e. show that QHD smoothings of some of the singularities with
three-legged resolution graphs are unique (up to symplectic deformations).

Remark 4.1. It seems plausible to expect a similar result for the remaining
cases given in Figure 1 as well as for the four-legged cases depicted in
Figure 2, but our method falls short in answering this more general question.

In the proof we will appeal to the following two facts.

Lemma 4.2. Let J be a tame almost complex structure on CP2. For any
integer n ≥ 3 let Zn denote the set of n-tuples (z1, z2, . . . , zn) ∈ (CP2)

n
such

that no three of the zi lie on a J-holomorphic curve of degree 1. Then the
complement of Zn is a finite union of submanifolds of real codimension 2.

Lemma 4.3 ([21, Lemma 5.11]). Let S1(t), . . . , Sk(t) be 1-parameter
families of closed submanifolds of a compact manifold M . Suppose that⋃

1≤i≤k Si(t) has at most transversal double points for every t. Then there

exists an ambient isotopy Φt : M → M such that Φt

(
Si(0)

)
= Si(t) for

all t.
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Proof of Theorem 1.1 in case Γ ∈ W ∪N . Suppose that Γ is one of the
graphs of Figures 1(a), (b) or (c). Let W be a minimal weak symplectic
QHD filling of the Milnor fillable contact structure on the link YΓ of the
singularity (SΓ, o). After symplectically gluing the symplectic cap ZΓ to W
denote the resulting rational symplectic 4-manifold by R. After repeatedly
blowing down all pseudoholomorphic (−1)-curves in R we will arrive at one
of the configurations of pseudoholomorphic curves given in Figure 3(c) (if
Γ is one of the graphs of Figure 1(a)) or in Figure 4(d) (if Γ is one of the
graphs of Figure 1(b) or (c)) in CP2 for a tame almost complex structure J1.

First suppose that we end up with a configuration of four pseudoholo-
morphic curves {Ci} of degree 1 in CP2 as depicted in Figure 3(c). Note that
we can specify four pseudoholomorphic curves of degree 1 in general posi-
tion (that is, no three meet in a point) by specifying four points, no three of
which lie on a degree 1 curve, by declaring, say, the curves to be those which
pass through the first and second points, the third and fourth points, the
first and third points and the second and fourth points. Now suppose that
our given configuration {Ci} is specified by the four points {pi}1≤i≤4. Let
{qi}1≤i≤4 be the four points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1], re-
spectively, in CP2 and let J0 denote the standard complex structure on CP2.
Let {Li} denote the four J0-holomorphic curves of degree 1 specified by the
four points {qi}. We will show that we can find a 1-parameter family of
four embedded spheres whose union has at most transversal double points
starting with the four embedded spheres {Li} and ending with the four em-
bedded spheres {Ci}. To this end, let Jt, t ∈ [0, 1], be a family of tame
almost complex structures connecting J0 to J1. By Lemma 4.2, we can
choose a 1-parameter family of four points {pi(t)}1≤i≤4, t ∈ [0, 1] connect-
ing {qi} to {pi} such that for each t no three of the points {pi(t)} lie on a
Jt-holomorphic curve of degree 1. For t ∈ [0, 1] let {Ci,t} be the four Jt-
holomorphic curves of degree 1 specified by the four points {pi(t)}. Then
{Ci,t} is a 1-parameter family of four embedded spheres whose union has at
most transversal double points starting with the four embedded spheres {Li}
and ending with the four embedded spheres {Ci} as desired. For each t, we
now reverse the sequence of blow-downs described in Figure 3 to obtain a 1-

parameter family of configurations in CP2#
(
|Γ′| − 1

)
CP2 of the type given

in Figure 3(a) starting with a configuration Γ′
0 derived from the spheres

{Li} and ending with the original dual configuration Γ′ in the complement
of W . Now, applying Lemma 4.3, we can find an ambient isotopy Φt of the

pair (CP2#
(
|Γ′| − 1

)
CP2,Γ′

0) with the pair (CP2#
(
|Γ′| − 1

)
CP2,Γ′). The
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uniqueness of symplectic QHD fillings of YΓ up to symplectic deformation
equivalence follows at once.

Now suppose that we end up with a configuration of the type given in
Figure 4(d) in CP2. Here we note that given five points in CP2, no three
of which lie on a pseudoholomorphic curve of degree 1, there is a unique
nonsingular pseudoholomorphic curve of degree 2 which contains the five
points. Thus any set of five points {pi}1≤i≤5 in CP2, no three of which
lie on a pseudoholomorphic line, defines a unique configuration of the type
given in Figure 4(d). Namely, take the unique pseudoholomorphic curve of
degree 2 through the five points together with a pseudoholomorphic curve of
degree 1 tangent to the degree two curve at p1 and the pseudoholomorphic
curves of degree 1 through p1 and p3, and p2 and p3. The rest of the
argument is as before.

The proof of Theorem 1.1 in case Γ ∈M can be conveniently phrased by
using a slightly different compactification from the one we encountered in
Section 3. We show the sequence of blow-downs and blow-up in Figure 12
providing this alternative compactification. The proof of Theorem 1.1 in

Fig. 12. A sequence of blow-downs and blow-up resulting in another compactifying
divisor for a singularity defined by one of the graphs of Figure 1(d), (e), (f) or (g)
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this case rests on the following theorem of Ohta and Ono.

Theorem 4.4 (Ohta–Ono, [21, Theorem 5.8]). Suppose that J1 is a tame
almost complex structure on CP2. Let D1 be a J1-holomorphic cuspidal
rational curve which represents the class 3[CP1]. Let q denote the cusp
point of D1. Let D0 be a cuspidal cubic curve in CP2 with respect to
the standard complex structure J0 such that the cusp point of D0 is also
at q. Suppose that {Jt} is a one-parameter family of tame almost complex
structures joining J0 with J1. Then there exists a one-parameter family
φt : CP1 → CP2 of pseudoholomorphic maps representing the class 3[CP1]
such that φt is Jt-holomorphic for each t, φt(CP

1) connects D0 to D1, and
each curve Dt = φt(CP

1) has exactly one nonimmersed point which is of
multiplicity 2 and is at q.

Fig. 13. Blowing up the transversal point of intersection of the cuspidal curve with the
(+2)-curve on (a) and then blowing down the two (−1)-curves which are the proper

transforms of the ruling curves passing through that point, we get (b)

Proof of Theorem 1.1 in case Γ ∈M. Suppose that Γ is one of the graphs
of Figures 1(d), (e), (f) or (g). Let W be a minimal weak symplectic QHD
filling of the Milnor fillable contact structure on the link YΓ of the singularity
(SΓ, o). After symplectically gluing the symplectic cap ZΓ, which is a regular
neighbourhood of the configuration of solid curves given in Figure 12(e), to
W , denote by R the resulting rational symplectic 4-manifold. Since W is a
minimal QHD filling, it can be shown that there must be three (−1)-curves
in R intersecting the configuration of pseudoholomorphic curves in ZΓ as
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indicated by the dashed curves in the Figure 12(e). Blowing down these
three (−1)-curves and then successively blowing down other (−1)-curves
that are formed in the process, we eventually arrive at the configuration
given in Figure 13(a) in CP1 × CP1. Now blowing up the point where the
(+2)-curve and the cuspidal curve intersect transversely and then blowing
down the two (−1)-curves which are the images of ruling curves passing
through that point we arrive at the configuration of pseudoholomorphic
curves given in Figure 13(b) in CP2 for some tame almost complex structure
J1 on CP2. Denote by D1 the cupsidal curve and by q its cusp point.
By a change of coordinates on CP2, if necessary, we may assume that
q = [0 : 0 : 1]. Note that we can assume that J1 is integrable near q since we
can assume that the original almost complex structure on R is integrable
in a neighbourhood of the compactifying divisor. Now consider the four
pseudoholomorphic curves of degree 1 shown in Figure 13(b). Clearly
the vertical curve, that is the pseudoholomorphic curve of degree 1 which
intersects D1 with intersection multiplicity 3 at q, is uniquely determined
byD1. Specifying the remaining three pseudoholomorphic curves of degree 1
is equivalent to picking two points on the smooth part of D1 such that the
unique pseudoholomorphic curve of degree 1 through the chosen two points
is nowhere tangent to D1. For our given configuration, denote these two
points by p1 and p2.

Now let D0 be the cuspidal cubic curve
{
y2z − x3 = 0

}
in CP2 with

respect to the standard complex structure J0. Then the cusp point of D0

is also at q = [0 : 0 : 1]. Also let r1 and r2 be the two points [1 : 1 : 1]
and [1 : −1 : 1], respectively, on the smooth part of D0. Then the unique
J0-holomorphic curve of degree 1 through r1 and r2 is nowhere tangent to
D0. Now suppose that {Jt} is a 1-parameter family of tame almost complex
structures connecting J0 with J1 such that Jt is integrable near q for each
t. By Ohta and Ono’s Theorem 4.4, there exists a one-parameter family
φt : CP1 → CP2 of pseudoholomorphic maps representing the class 3[CP1]
such that φt is Jt-holomorphic for each t, φt(CP

1) connects D0 to D1, and
each curve Dt = φt(CP

1) has exactly one nonimmersed point which is of
multiplicity 2 and is at q. Since the almost complex structure is integrable
near q, it follows that the singular point q of Dt is necessarily a (2, 3)-cusp
point for each t (c.f. [21]). By reparametrising the domain, if necessary, we
may assume that φt maps ∞ ∈ CP1 = C ∪ {∞} to the cusp point q for
each t.

Now consider the 1-parameter family {Dt} of cuspidal pseudoholomor-
phic curves of degree 3. For a point p on the smooth part of Dt, let Lp



Smoothings of Singularities and Symplectic Topology 85

denote the unique Jt-holomorphic curve of degree 1 passing through p and
tangent to Dt at p. Then either Lp intersects Dt at the point p only (with
intersection multiplicity 3) or else it intersects Dt at one further point. Let
p̃ be equal to p in the first case and the intersection point of Lp and Dt

different from p in the second case. Now set

Σ1,t =
{
(z1, z2) ∈ C× C | φ̃t(z1) = φt(z2)

}
Σ2,t =

{
(z1, z2) ∈ C× C | φ̃t(z2) = φt(z1)

}
Also let Δ denote the diagonal in C × C. Then the real dimension of Δ is
2 and that of Σ1,t and Σ2,t is also 2 for all t. Thus we may choose a path
(z1, z2) : [0, 1] → C × C beginning at

(
φ−1
0 (r1), φ

−1
0 (r2)

)
and ending at(

φ−1
1 (p1), φ

−1
1 (p2)

)
such that for all t

(
z1(t), z2(t)

)
∈ C×C\(Δ∪Σ1,t∪Σ2,t).

For such a path, the pair
(
p1(t), p2(t)

)
, where pi(t) = φt

(
zi(t)

)
for i =

1, 2, is such that the unique Jt-holomorphic curve of degree 1 through
p1(t) and p2(t) intersects Dt transversely in 3 points for all t. For each
t now consider the cuspidal Jt-holomorphic curve Dt of degree 3, the Jt-
holomorphic curve of degree 1 intersecting Dt with multiplicity 3 at q and
the three Jt-holomorphic curves of degree 1 passing through each pair of the
three points

{
q, p1(t), p2(t)

}
. Now by reversing the sequence of blow-downs

and blow-ups that were used to obtain the configuration in Figure 13(b)
from the configuration in Figure 12(a), we can obtain a 1-parameter family

of configurations of the type given in Figure 12(a) in CP2#
(
|Γ′| − 1

)
CP2

starting with a configuration Γ′
0 derived from the cuspidal cubic D0, the

line {y = 0} and the three lines passing through each pair of the three
points {q, r1, r2} and ending with the original dual configuration Γ′ in the
complement of W . The proof is now completed by appealing to Lemma 4.3.
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5. The Differential Topology of Some of the QHD
Smoothings

The description of a QHD smoothing of a singularity as the complement
of the compactifying divisor in some rational surface can be conveniently
used to describe the smoothing in differential topological terms. In partic-
ular, in this section we will describe a method (and demonstrate it with a
few examples) for determining a Kirby diagram of the QHD smoothing of a
singularity at hand. Kirby diagrammatic descriptions are already available
for the QHD smoothings of the singularities given by the diagrams of Fig-
ure 1(a), (b) and (c) in [7]; in that paper a method relying on monodromy
substitutions and Lefschetz fibrations is used. Here we will use a more direct
method. In our subsequent examples we will focus on some of the special
cases encountered in the earlier sections.

Recall that a smooth, compact 4-manifold (with possibly non-empty
boundary) admits a Morse function with finitely many critical points, and
with a unique local minimum. Such a Morse function induces a handle de-
composition on the manifold, and Kirby diagrams are designed to record
the handle decompositions. Indeed, (4-dimensional) 1-handles can be picto-
rially presented as dotted and unknotted circles in S3 (which are unlinked
from each other), meaning that if we take a spanning disk properly em-
bedded in D4 for every dotted circle (disjoint from the others) and delete
their open tubular neighbourhoods, then the result will be diffeomorphic to
the result of attaching 1-handles to D4. Then 2-handles are attached along
framed circles to the boundary of the union of 0- and 1-handles, hence the
handles with indices ≤ 2 can be captured by a diagram in S3 involving
some number of dotted circles (all unknotted and unlinked from the other
dotted circles), and some further integer-framed knots. If the 4-manifold
has nonempty boundary, and the Morse function has critical points of in-
dex ≤ 2, then this picture is complete (this is the case, for example, for all
Stein domains). If the 4-manifold is closed, then the 3- and 4-handles can
be attached in a unique manner (up to diffeomorphism), hence we do not
need to record them.

A fixed 4-manifold, however, can be presented in many different ways,
the correspondence among these different presentations is given by the set
of Kirby moves in Kirby calculus. The moves simply correspond to handle
slides and handle cancellations of handles of index n and n+1. We will not
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give a complete treatment of this theory here (cf. [11] for a more thorough
discussion), but just highlight the moves we will use later.

A pair of index-n and index-(n + 1) handles can be cancelled if the
attaching circle of the (n + 1)-handle intersects the belt sphere of the n-
handle in a unique point. In the pictorial presentation this means that a
1/2-handle pair cancels if the circle of the 2-handle intersects the spanning
disk (in S3) of the dotted circle corresponding to the 1-handle in a unique
point. A 2/3 pair cancels if the circle of the 2-handle can be separated from
the rest of the picture, and it comes out as a 0-framed trivial knot. A 2-
handle can be slid over any other 2-handle, the circle corresponding to the
result is the connected sum of the two circles (along an arbitrarily chosen
band connecting the two circles), and the new framing is the sum of the
framings modified by (±2)-times the linking number of the original knots.
(The sign depends on whether the band respects or disrespects some chosen
orientations on the two knots, choices which also influence the sign of the
linking number.)

One specific case of this move can be summarized as follows: if there is
a (±1)-framed unknot such that k further arcs pierce its spanning disk in
S3, then the unknot can be displaced to a disjoint unknot (having the same
framing), but the k arcs undergo a full (∓1)-twist (with framings changing
depending on how many arcs fall into the same connected component of the
original link, cf. [11, Figure 5.18] and the text therein). For the pictorial
presentation of the above said, see Figure 14 (without the framings).

Fig. 14. The diagram describes the effect of blowing up (or down) a sphere of
self-intersection ±1

Recall that in our case the smoothing under consideration is given as the
complement of the compactifying divisor K in a suitable rational surface R.
Our first aim is to give a handle decomposition of the rational surface, in
which the plumbing corresponding to the compactifying divisor K is explic-
itly visible, and then consider the complement of that plumbing. In the
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diagram this means that the part of the diagram building up the plumb-
ing is treated differently: as a collection of handles defining the 3-manifold
on which the handles giving the complement of the plumbing rest. Such
a diagram is called a ‘relative Kirby diagram’, and is much less popular
than its absolute counterpart (in which case we build the diagram on S3).
The relative diagram can be turned into an absolute one by ‘turning it up-
side down’, which is rather simple for the 2-handles—the attaching circle
of the dual is a 0-framed meridian of the knot corresponding to the orig-
inal 2-handle, but rather complicated for the 3-handles (since their duals
are 1-handles, which are ‘under’ the 2-handles). To overcome this difficulty,
we will peel off the 3- and 4-handles of the rational surface R, then turn
the 2-handles in the complement of the compactifying divisor upside down,
and then apply Kirby moves among the original handles (which built up
the 3-manifold #nS

1 × S2 for some n, the boundary of the union of the
3- and 4-handles). We do 3-dimensional handle moves (i.e. we change the
4-manifold, but keep the boundary 3-manifold the same), until the diagram
comprises the n-component 0-framed unlink. This corresponds to n em-
bedded 2-spheres with trivial normal bundle, hence we can perform surgery
along them, arriving at the collection of 1-handles we searched for. Pic-
torially this last step amounts to trading the 0-framing for a dot on the
corresponding unknot. We also need to reverse the orientation on the result
(which can be done by considering the mirror image of the diagram, with
all framings multiplied by −1) to compensate for the orientation reversal
we introduced when turning the handles upside down. The schematic plan
is given by Figure 15.

The only hard part of the above program is to identify a diagram for
the rational surface where the subdiagram corresponding to the compacti-
fying divisor is clearly visible. Drawing Kirby diagrams presenting specific
surfaces has been discussed in [11], and it can be a rather challenging ex-
ercise. In our situation, however, things are slightly simpler. We will start
with an appropriate diagram of CP2 where the curves we get in the final
blow-down are visible. That step, again, might be complicated in general,
but in our cases we only need to deal with projective lines and cubic curves,
cf. the discussion in [11, Example 6.2.7]. Then the argument for identify-
ing the smoothing provides a blow-up sequence which gives the embedding
of the compactifying divisor in the appropriate rational surface, and which
has exactly the smoothing as its complement. We will start by working out
the description of the fillings given by Theorem 2.3. As given in the proof,
the neighbourhood of the compactifying divisor is a linear plumbing on p
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Fig. 15. The diagrams give a schematic description of the strategy for describing the
Kirby picture of a smoothing. nb(K) denotes the neighbourhood of the configuration K

for which we take the complement

vertices, the first two with framings +1 and −1, and all the others with
framing −2. We get this picture by blowing up a pair of lines in the projec-
tive plane. In diagrams, we consider a positive Hopf link, with both circles
(+1)-framed. Indeed, by sliding one off the other, we get a 2-component un-
link, with framings 0 and +1, so adding a 3- and a 4-handle we get CP2, i.e.
the Hopf link (with the (+1)-framings and the 3- and 4-handles) really pro-
vides a diagram for the projective plane and the curve configuration (of two
generic projective lines) in it. Now blowing up one of the curves, and then
repeatedly blowing up the (−1)-curve, and finally blowing up the 0-framed
circle (which was one of the knots in the Hopf link) we get a presentation of
the compactifying divisor in the blown-up rational surface. In addition we
also see the (−1)-spheres we found in the proof of Theorem 2.3 (for p 
= 4);
in the diagram of Figure 16(a) they are symbolized by dashed circles. Now
peel off the 3- and 4-handles, and turn the complement of the compacti-
fying divisor upside down. This amounts to adding 0-framed meridians to
the dashed circles. The framings of these new 0-framed meridians now are
distinguished by putting them into brackets. The corresponding Kirby di-
agram is shown by Figure 16(a). After sequentially blowing down the two
dashed (−1)-curves and all the original (−2)-curves, we arrive at the dia-
gram of Figure 16(b). Blow down the (+1)-curve which is unlinked from the
bracketed curves, and then slide the (p− 1)-framed (bracketed) curve over
the other bracketed one. The resulting diagram is given by Figure 16(c).
Now converting the (unbracketed) 0-framing to a dot and then cancelling
the 1-handle/2-handle pair, and finally reversing the orientation (by taking
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the mirror image of the unknot, and multiplying its framing by −1), we
arrive at the diagram of a single (−p)-framed unknot, the Kirby diagram
of Dp, as claimed in Theorem 2.3.

Fig. 16. The blow-down procedure, with the extra (fine) curves, and finally surgery and
handle cancellation provides the diagram of the smoothing of the singularities discussed

in Theorem 2.3 (for p �= 4)

Recall that there was an exceptional case for p = 4. In that case a
further possible blow-up sequence was possible: after blowing up one of the
unknots in the Hopf link, blow up the intersection of the (−1)-curve with
the original projective line, and then blow up this last (−1)-curve. The
corresponding blown-up rational surface with the appropriate compactifying
divisor and the (−1)-curve in it is shown in Figure 17(a). (We apply the
previous convention of drawing the last (−1)-curve dashed, and the dual
0-framed handle to it by fine line, and put the 0-framing into brackets.)
Reverse the above blow-up sequence, that is, blow down e2, e3 and e4
of Figure 17(a), and get (b). Blowing down the (+1)-framed circle and
reversing orientation we get Figure 17(c), which is, after switching the 0-
framing for a dot (i.e. surgering the 2-handle into a 1-handle) is exactly the
diagram of [11, Figure 8.41] (with p = 2 in that convention). In fact, the
same diagram also shows that the 4-manifold we get is the complement of
the conic in CP2: It is rather easy to see that if we consider Figure 17(b)
with the {0}-framed circle deleted, and we add to it a 3- and a 4-handle,
then we get CP2, and the 4-framed circle corresponds to a conic. Adding a
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Fig. 17. The extra case of p = 4 in Theorem 2.3

dual handle to the (+1)-framed circle (representing the complement of the
conic) and then blowing down the (+1)-framed circle, and finally surgering
along the 0-circle and reversing the orientation we get the diagram of the
complement, which is identical to the diagram of the smoothing we have
found above.

Next we determine the diagram of the QHD smoothing for the family
of graphs shown in Figure 1(f). The corresponding sequence of blow-downs
is shown by Figure 5 with the choice p = r = 0; the diagrams in this
special case are shown in Figure 18. Once again, we start by picturing
the end-result, that is, the curves of Figure 18(d) in CP2. The cubic and
the line can be given by a 9-framed trefoil and an (+1)-framed unknot
linking each other with multiplicity three. (The Seifert surface of the unknot
completes the disk in the handle to a sphere, i.e. to a projective line, while
an appropriate Seifert surface of the trefoil together with the core disk of
the handle gives topologically a smooth cubic.) By taking a Seifert surface
with one positive double point, indeed, the same trefoil knot can be used to
depict a nodal cubic curve. We need to visualize a cubic and a line which are
triply tangent at a point—in our diagrammatic language this corresponds
to the fact that the two curves admit a triple linking. Such a triple linking
is shown by the box (containing the number three) of Figure 19(a). Indeed,
repeatedly blowing it up three times, we can separate the two curves, and
this property characterizes the triple tangency. (See also the upper diagram
of Figure 19(b) for the three-fold blow-up.) An additional (+1)-framed
unknot (and two 3-handles and a 4-handle) completes the picture to get a
diagram for CP2. (For this step, disregard the fine curve of Figure 19(a)
with bracketed framing.) Indeed, taking the left (+1)-framed unknot off,
the trefoil and the other circle both become 0-framed unknots, and they
form an unlink, hence can be cancelled against the 3-handles. Therefore the
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Fig. 18. The special case of Figure 5 for p = r = 0

diagram really presents CP2 with a nodal cubic and a line triply tangent
to it. By blowing up the triple tangency three times, and the positive
self-intersection of the cubic (n + 4)-times (as shown in the diagrams of
Figure 19(b)), we get a diagram of a blown-up projective plane, where the
plumbing corresponding to the dual graph of the resolution of the singularity
at hand (given by Figure 18(b)) is explicitly visible. Once again, at this
point we disregard the fine curves with bracketed framings. The diagram
contains two curves not in the configuration: the starting (+1)-framed
unknot, and the last (−1)-framed unknot. In Figures 19(a) and (b) we have
already put the meridional 0-framed unknots to these curves. (The framings
of these curves, as always, are in brackets.) Recall that our aim is now to
transform the curves in the configuration using 3-dimensional Kirby moves
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Fig. 19. The diagram (a) of CP2, and (b) the blow-up of the double point and the triple
tangency. In the right we also show the result of blowing the sequence of (n+ 3)

(−2)-circles (and the (−1)-circle) back down

Fig. 20. The diagram we get after blowing down the circles contributing to the
configuration K. The two 0-framed circles on the diagram form a 2-component unlink
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until they present #2S
1×S2 by a 2-component 0-framed unlink. Repeatedly

blowing down the curves in the configuration, we arrive at the diagram of
Figure 20. In this diagram the two 0-framed circles apparently form an
unlink. This fact becomes visible only after some isotopies, the end result
is given by Figure 21. Performing the surgeries along the 0-framed unknots

Fig. 21. The diagram of Figure 20 after an appropriate sequence of isotopies

(realized by changing the 0-framings to dots), and reversing the orientation
(and the signs of the framings), we arrive at the Kirby diagram of Figure 22,
representing the QHD smoothing of the singularity of Figure 1(f).

Adaptation of the above strategy then produces a Kirby diagram for all
the QHD smoothings of the singularities given by the diagrams of Figure 1.
In some cases this adaptation is rather non-trivial; we hope to return to this
issue in a future project.
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Calculating Milnor Numbers and Versal

Component Dimensions from P-Resolution Fans

NATHAN OWEN ILTEN

We use Altmann’s toric fan description of P-resolutions [1] to formulate a new
description of deformation theory invariants for two-dimensional cyclic quotient
singularities. In particular, we show how to calculate the dimensions of the
(reduced) versal base space components as well as Milnor numbers of smoothings
over them.

1. Introduction

The deformation theory of (two-dimensional) cyclic quotient singularities is
fairly well understood. Kollár and Shepherd-Barron have proven a corre-
spondence between so-called P-resolutions and reduced components of the
versal base space in [4]. P-Resolutions were further studied using contin-
ued fractions by Christophersen and Stevens in [2] and [6] respectively, who
both managed to write down explicit equations for the reduced components
of the versal deformation. In [1], Altmann uses the continued fractions of
Christophersen and Stevens to describe P-resolutions in toric terms, that is,
in terms of a fan.

This paper deals with the dimension of the versal base components as
well as the Milnor numbers of smoothings over them. A formula for the
Milnor numbers is provided in [6]. Furthermore, for the Q-Gorenstein one-
parameter smoothing of T -singularities, Altmann has already provided a
simple formula in toric terms. The first aim of this paper is to generalize
Altmann’s formula to smoothings over all components of any cyclic quotient
singularity. Our new formula allows the Milnor number of a smoothing to
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be read directly from the geometry of the fan describing the corresponding
P-resolution.

A method for calculating the dimension of the versal base components
was first provided by Kollár and Shepherd-Barron in [4]. Even better,
the explicit equations in [2] and [6] allow one to write down a simple
formula. The second aim of this paper is to translate this component
dimension formula into toric language using Altmann’s toric description of
P-resolutions. Our new formula allows the dimension of a component to be
read directly from the geometry of the fans describing the minimal resolution
and the P-resolution corresponding to that component. Furthermore, the
difference in dimension between two components can be read solely from
the two fans describing the two corresponding components. Note also that
our proofs of the two formulae, while not differing significantly from those
by Stevens, can be easily understood within the context of toric geometry.

In Section 2, we provide necessary definitions and notation. We have
chosen notation so as to be completely consistent with [1]; in fact, readers
familiar with this paper can probably skip Section 2. In Section 3, we
describe Stevens’ formula for Milnor numbers and state and prove our new
toric formula. Likewise, in Section 4 we present the existing component
dimension formula and then state and prove our new toric formula. We
finish in Section 5 by providing an example demonstrating the practicality
of our formulae.

2. Cyclic Quotients and P-Resolutions

In the following, we recall the notions of cyclic quotients and P-resolutions,
as well as fixing notation. References are [3] for toric varieties, and [1] for
P-resolutions.

Let n and q be relatively prime integers with n ≥ 2 and 0 < q < n. Let
ξ be a primitive n-th root of unity. The cyclic quotient singularity Y(n,q) is
the quotient C2/(Z/nZ) where Z/nZ acts on C2 via the matrix(

ξ 0
0 ξq

)
.

Every two-dimensional cyclic quotient singularity is in fact a two-dimen-
sional toric variety: Let N be a rank two lattice with dual lattice M ; we
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will identify N with Z2. Let σ ⊂ N ⊗R be the cone generated by (1, 0) and
(−q, n). Y(n,q) is then isomorphic to the toric variety Uσ = SpecC[M ∩ σ∨].
Since by correct choice of basis every singular two-dimensional cone has
generators (1, 0) and (−q, n) for some q and n as above, every affine singular
two-dimensional toric variety is a cyclic quotient singularity.

Introduced by Kollár and Shepherd-Barron in [4], P-resolutions have
proven key to understanding the deformation theory of cyclic quotient sin-
gularities.

Definition. Let Y be a two-dimensional cyclic quotient singularity. A P-
resolution of Y is a partial resolution f : Ỹ → Y containing only T-
singularities such that the canonical divisor K

Ỹ
is ample relative to f .

T-singularities are exactly those cyclic quotients admitting a Q-Gorenstein
one-parameter smoothing

The following theorem describes the relationship between P-resolutions
and reduced components of the base space of the versal deformation for a
two-dimensional cyclic quotient singularity Y :

Theorem 2.1. There is a bijection between the set of P-resolutions {Ỹν}
of Y and the components of the reduced versal base space S, induced by
the natural maps Def ′ Ỹν → S, where Def ′ Ỹν is the space of Q-Gorenstein
deformations of Ỹν .

Proof. See [4], Section 3.

P-Resolutions were described by Christophersen and Stevens in terms of
continued fractions in [2] and [6]. In [1], Altmann provides a toric description
in terms of a fan; it is this latter description that we shall use in our
dimension formula.

Let c1, c2, . . . , ck ∈ Z. The continued fraction [c1, c2, . . . , ck] is induc-
tively defined as follows if no division by 0 occurs: [ck] = ck, [c1, c2, . . . , ck] =
c1−1/[c2, . . . , ck]. Now, if one requires that ci ≥ 2 for every coefficient, each
continued fraction yields a unique rational number.

Let n and q be relatively prime integers with n ≥ 3 and 0 < q < n− 1.1

We consider the cyclic quotient singularity Y(n,q). Let [a2, a3, . . . , ae−1],
ai ≥ 2 be the unique continued fraction expansion of n/(n− q). Note that
e equals the embedding dimension of Y(n,q). Furthermore, the generators

1This restriction simply ensures that Y(n,q) isn’t a hypersurface, in which case the
versal base space is irreducible.
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w1, . . . , we of the semigroup M ∩ σ∨ are related to this continued fraction.
Indeed, if we order the wi such that (wi+1, wi) is positively oriented for all
1 ≤ i < e, then w1 = (0, 1), we = (n, q), and wi−1 + wi+1 = aiw

i.

Likewise, let [b1, . . . , br] be the unique continued fraction expansion of
n/q. The generators of the semigroup N ∩ σ are related to this continued
fraction: v0 = (1, 0), vr+1 = (−q, n), and vi−1 + vi+1 = biv

i. Drawing rays
through the vi gives a polyhedral subdivision Σ of σ. The corresponding
toric variety TV (Σ) is the minimal resolution of Y with self intersection
numbers −bi; the number of exceptional divisors in this resolution is r.

For a chain of integers (k2, . . . , ke−1) define the sequence q1, . . . , qe in-
ductively: q1 = 0, q2 = 1, and qi−1 + qi+1 = kiqi. Now define the set

Ke−2 =

{
(k2, . . . , ke−1) ∈ Ne−2

∣∣∣∣
(i) [k2, . . . , ke−1] is well defined and yields 0
(ii) The corresponding integers qi are positive

}
.

Further, define the set

K(Y(n,q)) =
{
(k2, . . . , ke−1) ∈ Ke−2 | ki ≤ ai

}
.

Each k ∈ K(Y(n,q)) determines a fan: Σk is built from the rays generat-

ing σ and those lying in σ which are orthogonal to wi/qi−wi−1/qi−1 ∈MR

for some i = 3, . . . , e−1. Equivalently, the affine lines
[
〈·, wi〉 = qi

]
form the

“roofs” of the (possibly degenerate) Σk-cones τi. The length in the induced
lattice of each roof is (ai − ki)qi, and this segment lies in height qi.

Theorem 2.2. The P-resolutions of Y(n,q) are in one-to-one correspondence

to the elements of K(Y(n,q)). This correspondence can be realized by the
map k �→ TV (Σk), that is, k corresponds to the toric variety determined
by the fan Σk.

Proof. See [6] and [1].

For each k, denote by Sk the versal base component corresponding
to the P-resolution TV (Σk). We will present examples of several fans
corresponding to P-resolutions in Section 5.

Remark. The continued fraction [1, 2, 2, . . . , 2, 1] = 0 always belongs to
K(Y(n,q)). The P-resolution defined by the corresponding fan is the so-
called RDP-resolution of Y(n,q). This corresponds to the Artin component
of the versal base space, which always has maximal dimension.
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3. Milnor Numbers

Altmann notes in the introduction of [1] that T-singularities are exactly
those cyclic quotients coming corresponding to a cone σ attained by taking
the cone over some line segment of integral length μ+ 1 in lattice height 1.
In such a case, the Milnor number b2(F ) of the Q-Gorenstein smoothing of
the singularity is equal to μ. Note that the corresponding P-resolution is
simply the identity. On the other hand, Stevens has proven the following
general formula:

Proposition 3.1. Let Y be a cyclic quotient singularity and let F be the
Milnor fiber of a one-parameter smoothing of Y over Sk. Then

b2(F ) = dimT 1
Y − 3(e− 3) + #

{
2 < i < e− 1 | qi = 1

}
+ 2.

Proof. See lemma 5.3 in [6].

We will now formulate this in toric terms. Fix a cyclic quotient singu-

larity Y and let k ∈ K(Y ). For any two-dimensional cone τ ∈ Σ
(2)
k , let l(τ)

and h(τ) respectively denote the lattice length and height of its roof. We
then have the following theorem:

Theorem 3.2. Let F be the Milnor fiber of a one-parameter smoothing
of Y over Sk. Then

b2(F ) =

( ∑
τ∈Σ(2)

k

l(τ)/h(τ)

)
− 1.

Proof. The Milnor number b2(F ) can be read from the P-resolution as
the sum of the Milnor numbers of the Q-Gorenstein smoothings of each T-

singularity plus the total number of exceptional divisors. For any τ ∈ Σ
(2)
k ,

the Milnor number of the Q-Gorenstein smoothing of the T-singularity
TV (τ) is l(τ)/h(τ)−1 by Altmann’s result. On the other hand, the number
of exceptional divisors is simply the number of internal rays in Σk, that is,

one less than the number of two-dimensional cones τ ∈ Σ
(2)
k . Combining

these two facts yields the above formula.

Note that this result generalizes Altmann’s result for the special com-
ponent of a T-singularity.
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4. Component Dimension

We now state the explicit formula for computing the dimension of ver-
sal base components for a cyclic quotient singularity Y ; this comes from
Christophersen’s and Stevens’ description of the versal components.

Proposition 4.1. The dimension of the versal base component Sk corre-
sponding to the continued fraction k ∈ K(Y ) can be computed as

(4.1) dimSk = #{2 < i < e− 1 | qi = 1}+
e−1∑
i=2

(ai − ki)

where the ai, ki, and qi are as in Section 2.

Proof. This formula follows directly from Christophersen’s definition of V[k]

in Section 2.1.1 of [2].2

We now translate this formula into toric terms to attain a new dimension
formula depending only upon the geometry of the fans of the minimal
resolution and the corresponding P-resolution. Let Y = TV (σ) be a cyclic
quotient singularity with minimal resolution Ỹ = TV (Σ) and some P-
resolution TV (Σk) corresponding to the versal base component Sk. Let
vi be as in Section 2 the generators of the rays in the fan Σ. For any two-

dimensional cone τ ∈ Σ
(2)
k , let once again l(τ) and h(τ) respectively denote

the lattice length and height of its roof. Finally, define

ν =
r∑

i=1

(det
(
vi−1, vi+1

)
),

that is, ν is the sum over all r interior rays vi in Σ of the normed volume
of the simplex Conv

{
0, vi−1, vi+1

}
. This leads to our formula:

Theorem 4.2. The dimension of the reduced versal base component Sk is
given by:

dimSk = ν − 3r + 2 ·
∑

τ∈Σ′(2)
l(τ)/h(τ)− 2.

2Note that Christophersen’s indices are shifted by one.
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Proof. From corollary 3.18 in [7], we have

dimSk = h1(Θ
Ỹ
) + 2b2(F )− 2r,

where F is the Milnor fiber for the component Sk. Now, h1(Θ
Ỹ
) =∑r

i=1(bi − 1), see for example [5]. But each bi can be computed as
det
(
vi−1, vi+1

)
. The desired equation then follows from Theorem 3.2.

When comparing the dimension of two components S1 and S2 with
corresponding fans Σ1 and Σ2 we can even forget about ν and r:

Corollary 4.3. The difference in dimension between S1 and S2 is given by:

dimS1 − dimS2 = 2
∑

τ∈Σ1
(2)

l(τ)/h(τ)− 2
∑

τ∈Σ1
(2)

l(τ)/h(τ).

Proof. We express dimS1 and dimS2 using Proposition 4.2. The term
ν − 3r − 2 cancels, leaving the desired expression.

5. An Example

Fig. 1. Minimal and RDP resolution fans for σ = 〈(−2, 3), (4, 3)〉

Example. Consider the cone σ =
〈
(−2, 3), (4, 3)

〉
and let Y = TV (σ). It is

quite easy to find the minimal resolution fan Σ; this is done by adding rays
through all lattice points on the boundary of Conv

(
σ∩N \{0}

)
. Likewise,

to get the fan for the RDP resolution, one adds rays through all vertices of
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Fig. 2. Further P-resolution fans for σ = 〈(−2, 3), (4, 3)〉

Conv
(
σ ∩ N \ {0}

)
. These two fans are pictured in Fig. 1; note that the

dotted lines represent the roofs of two-dimensional cones in ΣRDP .

Finding further fans corresponding to P-resolutions is slightly more
tricky. Of course, one could use the continued fractions followed by Alt-
mann’s construction to get them, but it is also possible without them: every
P-resolution is dominated by the resolution corresponding to the fan with
rays through all lattice points in Conv

{
0, v0, vr+1

}
. Thus, by removing

these rays and checking for T-singularities and convexity of the roofs, one
finds all fans corresponding to P-resolutions. The two additional fans Σ1

and Σ2 found in this manner are pictured in Fig. 2; note that Y is in fact
a T -singularity and the fan Σ1 corresponds to the space of Q-Gorenstein
deformations.

Now, to calculate the desired Milnor numbers and component dimen-
sions, we only need to look at the above pictures. We see that smoothings
over the components corresponding to ΣRDP , Σ1, and Σ2 have Milnor num-
bers of 3, 1, and 2, respectively. The number of exceptional divisors r is
obviously 3 and one quickly calculates that ν = 9. Thus, the versal base
components corresponding to the fans ΣRDP , Σ1, and Σ2 have respective
dimensions of 6, 2, and 4.

Of course, one could have also calculated that Y corresponds to the
chain (a2, a3, a4, a5) = (3, 3, 2, 2) and that the fans ΣRDP , Σ1, and Σ2

correspond, respectively, to the chains [1, 2, 2, 1], [3, 1, 2, 2], and [2, 3, 1, 2].
Putting these values into Stevens’ formulas yields the same results as with
the toric formulas.
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Some Meeting Points of Singularity Theory

and Low Dimensional Topology

ANDRÁS NÉMETHI

We review some basic facts which connect the deformation theory of normal
surface singularities with the topology of their links. The presentation contains
some explicit descriptions for certain families of singularities (cyclic quotients,
sandwiched singularities).

1. Introduction

The aim of the present paper is to serve as a first introductory guide for those
researchers who wish to study the subtle connections between the analytic
and deformation invariants of normal surface singularities and topological
aspects. Since this subject is rather large, we had to make some selection:
here we will say nothing about the connection of singularity theory with
the Seiberg–Witten or Heegaard Floer theory, or even with lattice cohomol-
ogy. Instead, we focus on some aspects regarding deformations, the Milnor
fibers of the smoothings, and their connection with the Stein/symplectic
fillings in topology. The manuscript can be thought as a complement of the
manuscript of A. Stipsicz of this volume, where he concentrates mostly on
the topological methods and aspects. Here we wish to collect some facts
about the analytic part too.
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2. The Link, from Singularity Point of View

2.1. Definition

Let (X, 0) be a complex analytic normal surface singularity embedded in(
CN , 0

)
, and let Bε be the corresponding ε-ball. Then, for ε sufficiently

small, the intersection M := X ∩ ∂Bε is a connected compact oriented 3-
manifold, whose oriented C∞ type does not depend on the choice of the
embedding and ε. It is called the link of (X, 0) [60]. Moreover, one can
verify that X ∩Bε is homeomorphic to the cone over M . In particular,
M characterizes completely the local topological type of (X, 0). Therefore,
if an invariant of (X, 0) can be deduced fromM , we say that it is a topological
invariant.

2.2. M as a plumbed manifold

The bridge between the analytical and topological type of (X, 0) is realized
by a resolution, respectively by a resolution graph of (X, 0). Fix a suffi-
ciently small Stein representative X of (X, 0) (e.g. X ∩Bε as above) and let
π : X̃ → X be a resolution of the singular point 0 ∈ X. In particular, X̃ is
smooth, and π is a biholomorphic isomorphism above X \ {0}. We can as-
sume that the exceptional divisor E := π−1(0) is a normal crossing divisor
with smooth irreducible components {Ev}v∈V . Such a resolution is called
good. For a good resolution π, let Γ(π) be the dual resolution graph associ-
ated with π decorated with the self intersection numbers

{
(Ev, Ev)

}
v
and

genera {gv}v∈V (see [42]). We write ev := (Ev, Ev). Notice that H2(X̃,Z) is
freely generated by the fundamental classes

{
[Ev]
}
v
. Let I be the intersec-

tion matrix
{
(Ev, Ew)

}
v,w

. Since π identifies ∂X̃ with M , the graph Γ(π)
can be regarded as a plumbing graph, andM can be considered as a plumbed
manifold whose plumbing graph is Γ(π) (see e.g. [24, 61] or [62, 65, 89]).

In order to have the plumbing representation, it is necessary to consider
resolutions with normal crossing exceptional divisor, that is good resolu-
tions. Among the good resolutions there is a minimal one, called the mini-
mal good resolution. On the other hand, in some other considerations, it is
preferable to work with the minimal (not necessarily good) resolution. In
such a resolution, there is no rational smooth irreducible exceptional divisor
Ev with ev = −1.
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The link M is called rational homology sphere (RHS ) if H1(M,Q) = 0.
This is happening if and only if Γ(π) is a tree and gv = 0 for all v ∈ V .

2.2.1. Γ(π) is connected and I is negative definite [61]. The converse of
this was proved by Grauert [31]. More precisely, a connected plumbing
graph can be realized as a resolution graph of a (complex analytic) normal
surface singularity if and only if the associated intersection form I is negative
definite. This, by the next statement, gives a complete classification of the
possible topological types of (analytic) normal surface singularities.

We say that two plumbing graphs (with negative definite intersection
forms) are equivalent if one of them can be obtained from the other by a
finite sequence of blow-ups and/or blow-downs along rational (−1)-curves.
Obviously, for a given (X, 0), the resolution π, hence the graph Γ(π) too, is
not unique. But different resolutions provide equivalent graphs. By a result
of W. Neumann [75], the oriented diffeomorphism type of M determines
completely the equivalence class of Γ(π).

In fact, Neumann’s theorem was preceded by the following two key re-
sults. First, Mumford proved that the minimal resolution graph of (X, 0)
is empty if and only if M = S3 [61]. Later, Orlik and Wagreich general-
ized this for singularities with a good C∗-action as follows [83]. In this case,
M is a Seifert manifold which can be codified by its minimal (star-shaped)
plumbing graph, and this minimal plumbing graph coincides with the min-
imal good resolution graph of (X, 0). In particular, the minimal resolution
graph can be recovered from the Seifert invariants of the link.

3. Some Analytic Invariants of Normal Surface

Singularities

3.1.

The analytic type of (X, 0) is characterized by its local analytic ring OX,0

whose maximal ideal will be denoted by m0 ⊂ OX,0. It determines the
analytic invariants of (X, 0). We investigate the topological nature of
certain a priori analytical invariants, hence we deal mainly with discrete
invariants.
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3.1.1. The Hilbert–Samuel function is defined by

fHS(k) = dimC OX,0/m
k
0 for any k ≥ 1.

Then fHS(1) = 1 and fHS(2) − 1 = dimm0/m
2
0 equals the minimal N for

which some embedding (X, 0) ⊂ (CN , 0) can be realized, hence is called
the embedding dimension of (X, 0). For k � 1, fHS(k) = PHS(k) for some
polynomial PHS (called the Hilbert–Samuel polynomial)

PHS(k) = mk2/2 + a1k + a2.

The integer m above is called the multiplicity of (X, 0), and it is denoted
by mult (X, 0). It is not difficult to verify that if (X, 0) ⊂

(
CN , 0

)
is an

arbitrary embedding and L a generic affine space of codimension 2 (close to
the origin), then mult (X, 0) = #X ∩ L.

3.1.2. The geometric genus pg is defined as dimC H1(X̃,OX̃), where

X̃ → X is any resolution as above (see also 3.1.4).

The geometric genus is just one example of the many possible ana-
lytic invariants obtained from a fixed resolution π : X̃ → X via sheaf-
cohomology. For example, one can replace the structure sheaf by the tan-
gent sheaf θX̃ =

(
Ω1
X̃

)∗
and obtain θ := dimCH1(X̃, θX̃). The point is that

these invariants can be recovered from the sheaf-cohomology of some one-
dimensional spaces as well. Indeed, let Z (resp. ZQ) be the set of integral
(resp. rational) cycles, i.e. divisors of type Z =

∑
v∈V mvEv, mv ∈ Z (resp.

mv ∈ Q) supported on the exceptional divisor E of π. Then, for any Z ∈ Z,
one can consider hi(Z) := dimH i(Z,OZ) (for i = 1, 2). By the theorem of
formal functions (see [34, page 277]) if one takes Z with mv � 0 for all v,
then, e.g., h1(Z) = pg.

3.1.3. Z has a natural partial ordering:
∑

v mvEv ≥
∑

v nvEv if mv ≥ nv

for all v. If Z1 ≥ Z2 but Z1 
= Z2 then we write Z1 > Z2.

Some cycles Z > 0 are of special interest: they describe the possible
supports of analytic functions defined on (X, 0). More precisely, for any
f ∈ m0 let mv be the order of vanishing of f ◦ π along Ev, and set (f)E =∑

v mvEv. Define Zan by
{
(f)E | f ∈ m0

}
. This yields an ordered lattice

(in the sense that if Z1, Z2 ∈ Zan, then Z1+Z2 and min {Z1, Z2} are elements
of Zan). In particular, Zan has a unique minimal element (corresponding
to the “generic linear hyperplane section” in

(
CN , 0

)
). It is called the
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maximal ideal cycle Zmax (of S.S.-T. Yau), or the “fiber cycle”. Obviously
Zmax ≥

∑
v Ev.

By the above definitions, the divisorial part of the sheaf π∗(m0) is given
by Zmax. More precisely, there exists an ideal I, supported by a finite set
V (I), such that π∗(m0) = I ·OX̃(−Zmax). We say that π∗(m0) (or π) has no
basepoint, if V (I) = ∅. If π does have some base-points, by some (iterated)
blow-ups at the base-points, one can replace π by another resolution which
has no base-points. If π has no base-points, then mult (X, 0) = −Z2

max

(cf. [111]); a fact which illustrates the importance of the maximal cycle and
the basepoint freeness of π.

In fact, more generally, one expects an intimate relationship between the
pull-back sheaves π∗(mk

0) and the divisorial sheaves OX̃(−kZmax) (hence
between the Hilbert–Samuel function and the maximal ideal cycle).

3.1.4. Consider now the holomorphic line bundles Ω2
X\{0} of holomorphic

2-forms on X \ {0}. If it is holomorphically trivial then we say that (X, 0)
is Gorenstein. If one of its power is holomorphically trivial then (X, 0) is
Q-Gorenstein. E.g., complete intersections are Gorenstein.

Similarly, one can also consider the line bundle Ω2
X̃
. By a result of

Laufer [43]:

pg = dimCH0
(
X̃ \ E,Ω2

X̃

)
/H0

(
X̃,Ω2

X̃

)
.

This can be read ‘from (X, 0)’ as well: If H0
L2 denotes the global L2-forms,

then

pg = dimCH0
(
X \ {0},Ω2

X

)
/H0

L2

(
X \ {0},Ω2

X

)
.

4. Topological Candidates for Some Analytic Invariants

4.1.

One can ask if it is possible to recover a certain analytic invariant from
the link M . For a more complete discussion see e.g. [12, 65, 66, 67, 68, 69,
70, 71, 77, 78, 79, 87]. Similarly, we can ask the same question for certain
analytic properties which characterize important families of singularities.
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4.1.1. The Hirzebruch–Jung singularities, by definition, are characterized
by the existence of a finite projection (X, 0) →

(
C2, 0

)
whose reduced

discriminant space is included in the union of the coordinate axes of
(
C2, 0

)
.

On the other hand, one can show that (X, 0) is Hirzebruch–Jung if and
only if its link is a lens space L(p, q) with 0 < q < p and gcd(p, q) = 1; or
equivalently, if the minimal resolution graph is a straight line graph with all
genera zero (here we will use the traditional notation −bv instead of ev):

−b1 −b2 −bs
� � �· · ·

where −b1, . . . ,−bs are given by the continued fraction [b1, b2, . . . , bs]:

p/q = b1 −
1

b2 −
1

. . . −
1

bs

, b1, . . . , bs ≥ 2.

Notice also that a Hirzebruch–Jung singularity can also be realized as a
cyclic quotient singularity Xp,q :=

(
C2, 0

)
/Zp. Here the action is ξ∗(u, v) =

(ξu, ξqv), where ξ is a primitive p-th root of unity.

For general reference on Hirzebruch–Jung singularities, see e.g. [7] or [89].

4.1.2. Artin defined the rational singularities by the vanishing pg = 0.
Artin’s topological characterization, cf. [3, 4, 21, 91], is reviewed in section 7.

4.1.3. The rational double points, or RDP -singularities (i.e. rational singu-
larities with multiplicity two) are exactly the simple hypersurface singulari-
ties, hence those of type A-D-E. Topologically they are characterized by the
fact that their minimal resolution graphs are the well–known A-D-E (neg-
ative definite) graphs. Equivalently, any connected, negative definite graph
with gv = ev +2 = 0 for all v is the minimal resolution graph of some RDP
(and it is of type A-D-E ).

Additionally, the RDP ’s are exactly the (Kleinian) quotient singularities
C2/G for finite subgroups G ⊂ SL(2,C). Fore more details, see e.g. [21, 23].
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4.2. (Pseudo)Taut singularities

One can ask even for the possibility to characterize completely the analytic
type from the topological type. The list of singularities when this is happen-
ing was established by Laufer in [44] (completing the list started by Grauert,
Brieskorn, Tjurina and Wagreich). These singularities are called taut, their
topological types carry unique analytical structure. They include all the
Hirzebruch–Jung singularities and the rational double and triple points.

In fact, Laufer classified even those resolution graphs which support only
countably (equivalently, finitely) many analytic structures. They are called
pseudo-taut singularities and are distinguished by their topological types
and θ = h1(X̃, θX̃).

4.3. Topological candidates

Unfortunately, the class of (pseudo)taut singularities is rather restrictive.

On the other hand, in most of our geometrical problems we do not
really need this extremely strong, complete topological characterization.
In general, what we need is the behavior of some specific invariant only,
which guides a certain geometric phenomenon. For example, by [92, 112],
a deformation of the minimal resolution X̃ blows down to a deformation of
(X, 0) if and only if pg = h1(OX̃) remains constant during the deformation.

Therefore, one tries to characterize topologically some of the discrete
invariants of (X, 0) only. In general, the analytic invariants listed is section
3 are not topological, but if we restrict our study to some special families,
then they might be determined from the graph. In fact, in general, we have
‘topological candidates’ (or bounds), which in nice cases coincide with their
analytical counterparts. In the next paragraphs we will list some of them.

4.3.1. The topological candidate for Zan is the ordered lattice Ztop := the
set of cycles Z ∈ Z with Z > 0 and Z ·Ev ≤ 0 for any Ev. The point behind
this definition is that any Z ∈ Zan satisfies this property, hence Zan ⊂ Ztop.
More precisely, the definition of Ztop contains the topological obstruction
which should be satisfied by a cycle Z if it equals (f)E for some f ∈ m0.
Artin proved that, if Z1, Z2 ∈ Ztop, then min {Z1, Z2} ∈ Ztop. In particular,
Ztop has a unique minimal element Zmin, called Artin’s fundamental cycle,
or the minimal cycle [3, 4].
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Zmin is the topological candidate for Zmax. Clearly Zmin ≤ Zmax. If
Zmin = Zmax, and π∗(m0) has no base-points, then mult (X, 0) = −Z2

min, in
particular, the multiplicity is a topological invariant (a posteriori).

4.3.2. Another ‘pair’ is the following. The analytic invariant is the canon-
ical divisor KX̃ of X̃. Numerically, it is codified by the (anti)canonical
cycle ZK , which is the unique rational cycle in ZQ, supported by E, sat-
isfying (ZK , Ev) = −(KX̃ , Ev) for all v. The number −(KX̃ , Ev) can be
determined topologically by the adjunction formula:

(ZK , Ev) = Ev · Ev + 2− 2gv − 2δ(Ev) for all v.

(Above δ(Ev) is the sum of delta–invariants of the singularities of Ev.)

One shows that in the case of the minimal resolution one has (ZK , Ev) ≤
0 for any v. Since the intersection matrix is negative definite, this implies
that either ZK = 0 or all the coefficients of ZK are strictly positive (see e.g.
[49]). Moreover, ZK = 0 if and only if (X, 0) is a RDP -singularity and π is
the minimal resolution.

Note also that the rational number Z2
K+#V is independent of the choice

of π and is an invariant of the link M . On the other hand, Z2
K also plays

an important role: if π is the minimal resolution, Z2
K associated with π will

be denoted by Z2
K,m. Obviously, this number is also an invariant of M .

Finally notice that in the case of the minimal resolution, (ZK , Ev) = 0 for
some v if and only if Ev is a smooth, rational (−2)-curve. Sometimes we pre-
fer to avoid such curves (and prefer to have strict inequalities (K,Ev) > 0).
Therefore, in the minimal resolution we contract all the RDP -configurations
of curves (cf. 4.1.3). In this way we get a modification X̃ → X with X̃ in
general singular, but only with RDP ’s. It is called the minimal resolution
with RDP’s.

4.3.3. The main importance of the (anti)canonical cycle ZK comes from
its role in the Riemann–Roch formula. For this, we fix an integral cycle
Z > 0. Although the individual cohomology dimensions hi(Z) (i = 1, 2) in
general are not topological, the Euler characteristic χ(Z) := h0(Z)− h1(Z)
depends only on Γ(π) by the Riemann–Roch theorem. Indeed, χ(Z) =
−(Z,Z − ZK)/2.

4.3.4. ZK also characterizes the “topological counterpart” of the set of
Gorenstein singularities. The perfect analogue of their definition is the
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following: we say that (X, 0) is numerically Gorenstein if the line bundle
Ω2
X\{0} is topologically trivial. This happens if and only if Ω1

X\{0} is topolog-
ically trivial. Moreover, in terms of a fixed resolution, (X, 0) is numerically
Gorenstein if and only if ZK has integral coefficients. Obviously, Gorenstein
singularities are numerically Gorenstein.

Note that the Gorenstein property does not impose any further topolog-
ical restriction. Indeed, in [90] Popescu-Pampu proved that any numerically
Gorenstein topological type can support a Gorenstein analytic structure.

5. Deformations of Normal Surface Singularities

5.1. Deformations

If one tries to clarify how the analytical invariants change in a given topo-
logical type, one can start first to understand how they can vary in an
infinitesimal deformation. This is the subject of the (local/formal) defor-
mation theory.

Deformation theory analyses flat maps λ : (X , 0)→ (T, 0) whose special
fibre is identified with (X, 0), up to isomorphisms of maps which respect
these identifications. Such maps are called deformations of (X, 0) over (T, 0).
In this article, (T, 0) is always supposed to be reduced.

Since (X, 0) has an isolated singularity, one has a semi-universal defor-
mation (X , 0) → (B, 0). It has the property that all the deformations λ
are induced by a map (T, 0) → (B, 0) which is unique at the level of tan-
gent spaces, see [32, 95]. The space (B, 0) is called the base space of the
semi-universal deformation of (X, 0). It is smooth if (X, 0) is a complete
intersection [107], or if embdim (X, 0) = 4 [94]. But in general, B can be
singular with several irreducible components (with different dimensions),
and these components can intersect each other in complicated ways.

The space B, in general, is hardly computable. Usually, one first de-
termines its Zariski tangent space

(
T 1
X,0, 0

)
, the so-called first order defor-

mations of (X, 0), and then the obstruction space
(
T 2
X,0, 0

)
, with a map(

T 1
X,0, 0

)
→
(
T 2
X,0, 0

)
, whose fiber over the origin provides B.
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5.1.1. ‘Trivial’ deformations. Even if (in some cases) we can say very
little about B (or X → B), we would still like to be able to decide when a
flat deformation λ is ‘trivial’. Here we can think about analytic triviality,
or topological triviality. Analytic triviality means that the map (T, 0) →
(B, 0) is the constant map onto the origin. But, unfortunately, there is no
unanimously accepted definition which would answer to all the expectations
of the topological triviality. On the other hand, the multitude of the different
possibilities explore an extremely rich structure of the deformations; see
e.g. the papers of Teissier [104, 106] for different notions (like Whitney
conditions, equisingularity, simultaneous resolutions, or μ-constant, resp.
μ∗-constant deformations in the case of hypersurfaces).

Here we will emphasize mainly the notion of simultaneous resolution. It
also can be defined at different levels of complexity.

5.2. Simultaneous resolutions. Definitions [106, 47, 40].

Let λ : (X , 0) → (T, 0) be a flat deformation of (X, 0) as above. For any
t ∈ T we write Xt for λ

−1(t), and we use similar notations for other spaces
and invariants as well. Sometimes we fix a section s : T → X of λ (which
identifies for any t a base-point s(t) ∈ Xt, or a space-germ

(
Xt, s(t)

)
).

Let Π : X̃ → X be a proper modification, such that λ ◦Π is flat. We
say that

(i) Π is a simultaneous RDP resolution if each X̃t → Xt is a minimal
RDP resolution.

(ii) Π is a very weak simultaneous resolution if each X̃t → Xt is a minimal
resolution.

(iii) Π is a weak simultaneous resolution along s if it is a very weak
resolution near s(T ), and the restriction map Π : Π−1

(
s(T )

)
red
→ s(T ) is

simple (i.e. a locally trivial deformation in the Euclidean topology).

(iv) Π is a strong simultaneous resolution along s if it is a very weak
resolution near s(T ) and Π : Π−1

(
s(T )

)
→ s(T ) is simple.

We say that λ admits a simultaneous RDP (resp. very weak, weak, or
strong) resolution, if there exits Π as above with (i) (resp. (ii), (iii) or (iv)).

Notice that (ii) means that λ ◦Π is an analytic submersion. Also, from
(ii) it follows that if T is smooth then Π is a resolution of X .
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We emphasize that in (iii) Π−1
(
s(T )

)
red

is the topological space with
the Euclidean topology, which forgets the analytic space structure of the
inverse image; while in (iv) Π−1

(
s(T )

)
is the non-reduced analytic space.

In particular, in (iv) we require that the inverse images of the maximal
ideals of the germs

(
Xt, s(t)

)
behave trivially.

In the next paragraphs, for simplicity, we will take the unit disc D for T .

The literature about simultaneous resolutions and deformations of nor-
mal singularities is extremely rich, the interested reader is invited to navi-
gate the articles of Hironaka, Lipman, Schlessinger, Teissier, Lê, Brieskorn,
Tjurina, Riemenschneider, Wahl, Looijenga, Arndt, Cristophersen, Behnke,
Knörrer, Theo de Jong, van Straten, Pellikaan, Stevens, Vaquié, Kollár,
Shepherd-Barron.

5.3.

Our plan is to highlight some topological criteria which assure the existence
of some kind of simultaneous resolution, see [106, 40, 47, 48]. Some of these
topological descriptions are codified by some numerical invariants which,
in general, are semi-continuous. If we do not fix a section s, then we also
accept multiple singularities in the fiber Xt. If i is an invariant associated
with germs of normal surface singularities, then

∑
Xt

i will denote the sum∑
i(Xt, p) over all the singular points p of the fiber Xt.

Theorem 5.3.1. Let λ : (X , 0) → (D, 0) be a flat deformation of (X, 0).
Then

(i) [110]
(
Z2
K,m

)
t
(t ∈ D) is lower semi-continuous; i.e.

(
Z2
K,m

)
0
≤∑

Xt
Z2
K,m.

(ii) [26] (pg)t is upper semi-continuous; i.e. pg(X, 0) ≥∑Xt
pg.

5.4. Very weak simultaneous resolutions

First we mention a result of Brieskorn which says that if a deformation λ
admits a simultaneous RDP resolution, then by a finite surjective base-
change, λ can be transformed onto a deformation which admits a very
weak simultaneous resolution, cf. [15, 14], see also the survey of Pinkham:
Résolution simultanée de points doubles rationnels in [21, pages 179–203].
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In particular, if we accept base-changes, then the obstructions to have
a RDP, or a very weak simultaneous resolution are the same. Notice also
that the RDP resolution is unique (if it exists, cf. [40]); but the very weak
simultaneous resolution, in general, is not.

5.4.1. Topological characterization [47].
(i) Let λ : (X , 0) → (D, 0) be a flat deformation of a normal Gorenstein
surface singularity (X, 0). Then t �→∑Xt

Z2
K,m is constant if and only if λ

admits a simultaneous RDP resolution.

Here one can verify (see e.g. [47], page 12), that if (X, 0) is normal
Gorenstein then X and all the fibers Xt are normal Gorenstein.

(ii) Let λ be a family of normal Gorenstein singularities
(
Xt, s(t)

)
. If

Z2
K,m

(
Xt, s(t)

)
is constant, then pg

(
Xt, s(t)

)
is also constant.

Above, the Gorenstein assumption cannot be dropped, cf. [40](2.8), or
6.3 here. Nevertheless, 5.4.1 has a global version without the Gorenstein
assumption [40](2.1); see also [40](2.25) for a possible local analog.

5.4.2. Example. Let λ : (C3, 0)→ (C, 0) be a simple hypersurface singu-
larity. Then in the minimal resolution graph of (X, 0) =

(
λ−1(0), 0

)
one

has ZK = 0. On the other hand all the other fibers are smooth. Hence, for
any t one has

∑
Xt

Z2
K,min = 0. The existence of the very weak simulta-

neous resolution (after a base change) shows that the Milnor fiber of λ is
diffeomorphic to X̃, the minimal resolution of (X, 0).

This deformation also exemplifies the necessity of the base change in
Brieskorn result 5.4. Indeed, for the miniversal deformation one needs a
Galois base change with the corresponding Weyl group W . E.g., in the case
of A1 singularity, W = Z2, and

{
x2 + y2 + z2 = t2

}
admits a very weak

simultaneous resolution.

5.4.3. Example. Let (X, 0) be the hypersurface singularity (
{
z2 = x3 +

y12
}
, 0) ⊂

(
C3, 0

)
. Let X be {z2 = x3 +

(
y2 + t

)6}, a deformation over
t ∈ D. The exceptional divisor E of the minimal resolution of (X, 0) has two
irreducible components E1 ∪ E2 with g1 = 1, g2 = 0, E2

1 = −1, E2
2 = −2,

E1 · E2 = 1, ZK = 2E1 + E2. Hence Z2
K = −2. On the other hand, in this

deformation the singular point splits into two singular points: for t 
= 0, Xt

has two singular points, each having Z2
K = −1. Therefore, this deformation

admits a very weak (or RDP) simultaneous resolution.
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5.5. Topological characterization of weak simultaneous resolutions
[47, 40]

Let λ : X → D be a flat family of normal surface singularities, and s :
D → X a section of λ. Then the germs of {Xt}t∈D along s are pairwise
homeomorphic (i.e. each Xt has a singularity at s(t) such that

(
Xt, s(t)

)
is homeomorphic to (X, 0)) if and only if λ admits a weak simultaneous
resolution along s. Obviously, the topological condition is equivalent with
the stability of the links: Mt �M for any t (where � means ‘orientation
preserving diffeomorphism’).

5.5.1. Example. Assume that we are in the situation of 5.4.1 (ii); i.e. λ is
a family of normal Gorenstein singularities

(
Xt, s(t)

)
. Then if the link is

constant, then evidently Z2
K,m

(
Xt, s(t)

)
is constant too, hence pg

(
Xt, s(t)

)
is also constant.

If, additionally, each
(
Xt, s(t)

)
has a smoothing, with Milnor number

μt, then using the above statement and 6.5(2), one gets that if the link is
constant then μt is also constant.

5.6. Strong simultaneous resolutions

We assume that λ is a flat deformation of isolated hypersurface singularities(
Xt, s(t)

)
(t ∈ D).

We recall (see [104]), that for any isolated hypersurface singularity
(X, 0), Teissier defined an invariant μ∗. In dimensional two μ∗ = (μ(3), μ(2),

μ(1)) has the following significance: μ(3) is the Milnor number μ (see next

section) μ(1) = mult (X, 0)− 1, while μ(2) is the Milnor number of the plane
curve singularity obtained by cutting (X, 0) by a generic hyperplane through
the origin.

In [106] Teissier proved that the existence of a strong simultaneous res-
olution implies the Whitney condition along s(D). Moreover, by another
result of Teissier [104], and respectively of Briançon and Speder [13], the
Whitney condition is equivalent to μ∗

t constant. Finally, the circle is com-
pleted by Laufer in [48], where he proved that μ∗

t constant implies strong
simultaneous resolution for λ.

In particular, λ admits a strong simultaneous resolution if and only if

(μt, μ
(2)
t ,mult (Xt)) is constant.
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5.7.

If one tries to compare the strong, respectively the weak simultaneous resolu-
tions of deformations of isolated hypersurface singularities, then one realizes
that the difference which really separates them is codified in the invariants

μ
(2)
t and mult (Xt). Both depend essentially on the properties of the generic

hyperplane sections. Let mt be the maximal ideal of OXt,s(t). Then we re-
call (cf. 3.1.3) that Π∗

t (mt) = It · OX̃t
(Zmax,t). If μt and Π∗

t (mt) is constant
then λ admits a strong simultaneous resolution. If for a deformation λ (with
Mt and μt constant) a strong simultaneous resolution does not exist, then
we can expect that either one of the coefficients of Zmax,t jumps at t = 0,
or at the embedded points V (It) the structure of It is not constant.

For a deformation which admits a weak simultaneous resolution the
existence of a strong simultaneous resolution is not guaranteed, even if the
stable link is a rational homology sphere.

5.7.1. Example. Consider the deformation of hypersurface (even Newton
non–degenerate) isolated singularities ft = z33 + z42z1 + z101 + tz32z3 [12].
Then the link is stable under the deformation, nevertheless μ(2)(f1) = 7 and
μ(2)(f0) = 8. Note that in this case the stable link is a rational homology
sphere (similar examples without this additional property were constructed
by Briançon and Speder [13]).

6. Smoothings and Their Invariants

6.1.

A (flat) deformation λ : (X , 0)→ (D, 0) of (X, 0) is called a one parameter
smoothing of (X, 0) if Xt = λ−1(t) is smooth for t 
= 0. We will write F for
(the C∞ type of) Xt (t 
= 0), and we will call it the Milnor fiber of λ. F is an
oriented real connected 4-manifold with boundary M . As the fibers of λ are
Stein, F has the homotopy type of a finite CW -complex of dimension ≤ 2.
(For the choice of the ‘good’ representatives of the local Milnor balls, Milnor
fibers and fibrations, see e.g. the book of Looijenga [56].)

We write μ := rankH2(F,Z), and we call it the Milnor number of
the smoothing λ. In fact, H1(F,Q) = 0 (fact conjectured by Wahl [115],
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and proved by Greuel and Steenbrink [33]), hence the topological Euler
characteristic χtop(F ) of F is 1 + μ. The intersection form in H2(F,Z) is
symmetric. Let (μ+, μ−, μ0) be its Sylvester invariants and σ := μ+ − μ−
the signature of the Milnor fiber F . Notice that the Milnor fiber F , hence
all its invariants, depend on the choice of the smoothing λ.

Consider the semi-universal deformation (X , 0) → (B, 0) of (X, 0). An
irreducible component Bi of B is called a smoothing component of (X, 0)
if the general fiber over Bi is smooth. Any one parameter smoothing λ of
(X, 0) lies on a unique smoothing component.

6.1.1. Not every singularity (X, 0) admits a smoothing, and, in general, it
is rather difficult to decide if a specific singularity has any smoothing at all.
For different obstructions the reader is invited to search in the papers of
Laufer, Wahl, Looijenga, Pinkham [46, 115, 58, 55, 88] (and the references
therein).

For example, Dolgachev’s triangle singularity Dpqr (with Dolgachev
numbers p, q, r, cf. 8.3.2) admits a smoothing if p + q + r < 22 [55], can-
not be smoothed at all if p + q + r > 22 [115], and the remaining cases
p+ q + r = 22 are decided in [88]: all but D2,10,10 can be smoothed.

6.2. Example

For rational singularities all the components of B are smoothing compo-
nents. One of them is distinguished. It can be constructed as follows [5]:
let X̃ → X be the minimal resolution of (X, 0). Then all the deforma-
tions of X̃ come from deformations of (X, 0) (since pg is constantly zero).
These deformations provide a component, called the Artin component. It
is smooth [113].

6.3. Example

In general, even in the case of rational singularities, there are more (smooth-
ing) components. The first example was constructed by Pinkham [86]: the
cone over the rational normal curve of degree 4 has two smoothing compo-
nents. In this case, the minimal resolution graph has only one vertex with
e = −4 and g = 0 (hence evidently (X, 0) is rational, cf. 7.3). B has two
irreducible components; one of them is the Artin component B1, which has
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dimension 3. The other component B2 has dimension 1. In this case both
components are smooth and intersect each other transversally (cf. also with
the corresponding results of section 7 and 10).

The Milnor number corresponding to the Artin component is 1, while
the other Milnor number is 0. This means that the Milnor fiber F above
B2 is a rational homology ball (with boundary the lens space M = L(4, 1)).

The smoothing above B2 can be realized as follows, see e.g. [115], (5.9.1).
Consider the hypersurface singularity {f = 0} =

{
xy − z2 = 0

}
in
(
C3, 0

)
with the Z2-diagonal action (±1) ∗ (x, y, z) = (±x,±y,±z). The quotient
singularity {f = 0}/Z2 is exactly (X, 0), and the smoothing {f = t} of f
induces a one parameter smoothing of (X, 0). The Milnor fiber Ff of f has
the homotopy type of S2, and Z2 acts on Ff freely; hence χtop(F ) = 1,
which shows that μ = 0.

By [113], for any rational singularity, the semi-universal deformation
restricted above the Artin component admits a very weak simultaneous res-
olution. This is not true for the other components. In the example of
Pinkham, the deformation above B2 does not admit a very weak simulta-
neous resolution.

Notice also that in this example if one takes the semi-universal deforma-
tion restricted above the Artin component, then the invariant

∑
Xt

Z2
K,m is

not constant. Indeed, for t = 0 it is −1, otherwise it is zero. Nevertheless, a
very weak simultaneous resolution exists, hence the Gorenstein assumption
in 5.4.1 is needed.

6.4.

There are interesting relations which connect the topological invariants
Z2
K + #V, b1(M) (the first Betti number of the link M), the smoothing

invariants μ and σ, and the analytic invariant pg.

6.5. Theorem [22, 46, 99, 115, 58]

Consider a smoothing of the normal surface singularity (X, 0). Then

(1) 4pg = μ+ σ + b1(M).

In addition, if (X, 0) is Gorenstein, then

(2) μ = 12pg + Z2
K +#V − b1(M).
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In particular, for a smoothing of a Gorenstein singularity, (1) and (2) give

(3) σ + 8pg + Z2
K +#V = 0.

This shows that modulo the link-invariants Z2
K +#V and b1(M), there

are two independent relations connecting pg, μ and σ, provided that (X, 0)
is Gorenstein. Moreover, in the Gorenstein case, μ and σ are independent
of the smoothing.

6.5.1. Wahl in [115] added to this list some other relations. He also
explained a recipe by which one can create even more identities, modulo
a conjectural globalization assumption. This assumption was proved by
Looijenga in [57].

We will recall in the next paragraphs only one such identity which is
strongly related to deformations.

Let λ : (X , 0) → (D, 0) be a smoothing, and consider the relative
derivations θX/D. Then coker(θX/D ⊗ OX → θX) has finite dimension,
which will be denoted by β. Note that β is an a priori analytic invariant of
the smoothing λ. Recall that θ denotes h1(X̃, θX̃).

6.6. Theorem [115]

Consider the minimal resolution of (X, 0) with #Vmin irreducible excep-
tional components and (anti)canonical cycle ZK,m. Then, with the above
notations, one has:

(1) β equals the dimension of the irreducible component Bi of B on
which the smoothing λ occurs.

(2) β − θ + 14pg = 2
(
μ+ b1(M)−#Vmin

)
.

If (X, 0) is Gorenstein, then this (via 6.5(2)) transforms into

(3) β = θ + 10pg + 2Z2
K,m.

Notice that (by (2)) β depends only on (X, 0) and the Milnor number of
the smoothing λ; in fact, β − 2μ is independent of the smoothing. If (X, 0)
is Gorenstein, then β itself is independent of the smoothing.
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6.6.1. Example. If (X, 0) is rational then pg = b1(M) = 0. Then, for any
smoothing σ = −μ (i.e. the intersection form on H2(F ) is negative definite,
cf. 6.5(1)), 0 ≤ μ ≤ #Vmin, and

β = θ − 2(#Vmin − μ).

For smoothings supported by the Artin component B1 one has μ = #Vmin

and dimB1 = β = θ.

Assume that (X, 0) is rational, but not RDP. Then Wahl proved (cf. [8])
that

dimT 1
X,0 ≥ θ + embdim (X, 0)− 4,

which gives a lower bound for the codimension of the Artin component in
T 1
X,0. For many cases the equality holds (see e.g. [8], cf. also with 7.7 here).

But Wahl have found an example when the inequality is strict (cf. [8]).

For the ultimate formula for the codimension of the Artin component of
a rational singularity see [19].

6.7. Remark

In general it is extremely difficult to determine the number of irreducible
components of B and their dimensions. Hence, it is really remarkable if in
some cases this can be done, and it is even more remarkable if this can be
done only from the topology of the link; see the next section.

7. Rational Singularities

7.1.

In this section we exemplify for rational singularities that the topology
indeed carries a lot of analytic and smoothing information. Recall that,
by definition, (X, 0) is rational if pg = 0. In the sequel we fix a resolution π.
It is easy to see that pg = 0 if and only if h1(Z) = 0 for any Z > 0. In
particular, all the genera gv should vanish, and Γ(π) should be a tree.

The main point is that Artin succeeded to replace the vanishings of
h1(Z)’s by a criterion formulated in terms of χ(Z). In fact, the beauty of
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the second part of the next characterization is that it is enough to consider
only one cycle, namely the fundamental cycle Zmin. It is instructive to recall
that for any normal surface singularity h0(Zmin) = 1, hence χ(Zmin) ≤ 1.

7.2. Topological characterizations of rational singularities [3, 4]

(a) pg = 0 if and only if χ(Z) ≥ 1 for all cycles Z > 0.

(b) pg = 0 if and only if χ(Zmin) = 1.

Notice that the characterizations (a) and (b) are independent of the
choice of the resolution π. If a resolution graph satisfies (a) or (b), we say
that it is a rational graph. Note also that any resolution of a rational graph
is automatically good.

7.3. Examples

(a) If a rational singularity (X, 0) is numerically Gorenstein, then in the
minimal resolution ZK = 0. In particular, (X, 0) is a RDP.

(b) Let Γ be an arbitrary tree. For any vertex v set δv to be the
number of edges with endpoint v. Consider the decorations gv = 0 and

ev =

{
−δv if δv 
= 1

−2 if δv = 1
for any v. Then the intersection matrix I is auto-

matically negative definite, hence Γ is the minimal resolution graph of some
singularity. It is not difficult to show that Zmin =

∑
v Ev, χ(Zmin) = 1,

hence a singularity with such a resolution graph Γ is rational. Moreover,
Z2
min = −#{v : δv = 1}.
(c) Rational surface singularities with reduced fundamental cycle (i.e.

with Zmin =
∑

Ev) are also called minimal singularities (cf. [40], section 7).
E.g., the cyclic quotients are minimal.

The class of rational graphs is closed while taking subgraphs and de-
creasing self-intersections. The graphs of minimal singularities are obtained
from those considered in (b) by decreasing the decorations.

(d) There is another important subclass of rational singularities, the
so-called sandwiched singularities, studied by Zariski, Lipman, Hironaka,
Spivakovsky (who invented the name of the family), Theo de Jong, van
Straten and others, see e.g. [98, 39]. A sandwiched singularity is, by defi-
nition, a normal surface singularity which is analytically isomorphic to the
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germ of an algebraic surface that admits a birational morphism to
(
C2, 0

)
.

If we consider a resolution X̃ → X of such a singularity, then we get a dia-
gram (X̃, E) → (X, 0) →

(
C2, 0

)
. In particular, X is sandwiched between

two smooth spaces via birational maps.

They are also characterized by their (minimal) resolution graphs [98].
Consider a plane curve singularity (C, 0) ⊂

(
C2, 0

)
, and let φ : Y → C2

be a (in general, non-minimal) embedded resolution of it. Consider the
collection E of those irreducible exceptional divisors which are not (−1)-
curves (and assume that they form a connected curve). If one contracts E
then one gets a sandwiched singularity, and any sandwiched singularity can
be obtained in this way (although the choice of (C, 0) and φ is not unique).
Notice that this can be reformulated in terms of the combinatorics of the
graph as well.

The next theorem targets some of the analytic invariants introduced in
section 3.

7.4. Theorem [3, 4]

Assume that (X, 0) is rational and k ≥ 1. Then:

(a) Zan = Ztop, in particular Zmin = Zmax;

(b) π∗mk
0 = O(−kZmin), in particular mult (X, 0) = −Z2

min;

(c) dimCmk
0 /m

k+1
0 = −kZ2

min + 1, in particular embdim (X, 0) =
−Z2

min + 1;

(d) fHS(k) = −k(k − 1)/2 · Z2
min + k.

7.5.

Next we discuss the base space B of the semi-universal deformation of (X, 0).
Although there is a very general conjecture of Kollár about B, valid for any
rational singularity [41], we present the case of cyclic quotient singularities
only.

Notice that the cyclic quotient singularities are taut singularities. Hence,
the next discussion shows that even in those cases when a priori we know
that some invariant is topological, its representation from the graph can be
really complicated.
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For cyclic quotient singularities, Riemenschneider in [93] determined the
infinitesimal deformations T 1

X,0, and later Arndt gave the equations of the
base space B [2]. Here we reproduce the combintorial part of some results
obtained by J. Christophersen, J. Stevens and J. Kollár and N. I. Shepherd-
Barron (after [101]).

7.6. Combinatorial characterization of B

Assume as in subsection 4.1.1 that p/q = [b1, . . . , bs]. We write p/(p− q) =
[a2, . . . , ae−1]. (Here we will follow the traditional index notation.) These
two expansions are dual; one finds the first one from the second one with
Riemenschneider’s point diagram: place in the i-th row ai−1 dots, the first
one under the last dot of the (i − 1)-st row; then column j contains bj − 1
dots. From this it is easy to see that the length of the sequence a∗ (i.e.
e− 2) is 1 +

∑
j(bj − 2). Hence, the integer e is exactly embdim (Xp,q).

Indeed, since Zmin =
∑

Ev, 7.4 gives embdim = 3 +
∑

j(bj − 2).

If e = 2, then (X, 0) is smooth. If e = 3 then (X, 0) is a hypersurface
singularity As; in particular B is smooth and irreducible of dimension μ = s.

In the sequel we will assume that e ≥ 4. Let Ke−2 be the set of tuples
of positive integers [k] = (k2, . . . , ke−1), (ki ≥ 1), such that the continued
fraction [k2, . . . , ke−1] is zero and [k] is admissible in the sense of (10.2).
The cardinality of this set is 1

e−2

(
2(e−3)
e−3

)
, the Catalan number Ce−2. This

number also describes the number of ways to subdivide an (e− 1)-gon in
triangles using only diagonals which intersect at most at vertices. The
correspondence between the two methods of counting is the following. Mark
one of the vertices of the (e− 1)-gon by ∗ (this is called the distinguished
vertex), and the others by v2, . . . , ve−1. Given a subdivision, we define ki
as the number of triangles having vi as vertex (2 ≤ i ≤ e − 1). Then the
integers [k] = (k2, . . . , ke−1) determine an element in Ke−2.

In a similar way we also define the integer k∗ associated with the distin-
guished vertex ∗. It satisfies

k∗ +
∑

ki = 3(e− 3).

Then one has the following numerical identities (for details, see [101]):
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7.7. Theorem [Riemenschneider, Christophersen, Stevens]

• dimT 1
X,0 =

∑
j(bj − 1) + e− 4 = 2e− 7 + s.

• θ =
∑

j(bj − 1) = e− 3 + s.

• There is a one-to-one correspondence between the irreducible compo-
nents of B and continued fractions [k] ∈ Ke−2 with ki ≤ ai for all i.
For each [k] we denote the corresponding component by B[k], its di-
mension by β[k], and the corresponding Milnor number by μ[k].

• Each B[k] is smooth.

• β[k] =
∑

j(bj − 1)− 2(e− 3− k∗) = s+ k∗ − (e− 3− k∗).

• μ[k] = s− (e− 3− k∗) = β[k] − k∗ ≥ 0.

• For any [k] clearly k∗ ≤ e− 3, hence β[k] ≤ θ and μ[k] ≤ s.

• The Artin component corresponds to [k] = [1, 2, . . . , 2, 1]. This is the
unique [k] with k∗ = e− 3. In particular, the Artin component is the
unique component with β[k] = θ and μ[k] = s.

7.7.1. The above data follow from a very detailed analysis of the first or-
der deformation space T 1

X,0, and the corresponding equations of B in it. Of
course, from this one can obtain even more information about B (e.g. about
the intersection properties of the components). On the other hand, there
is another, completely different approach of Kollár and Shepherd-Barron,
which finds all the components of B, and all their dimensions, without com-
puting T 1

X,0 → T 2
X,0 (but provides no information e.g. about their intersec-

tions) [40]. This gives possibilities for remarkable generalizations (see [41])
to situations when T 1

X,0 → T 2
X,0 is out of reach.

This construction depends essentially on a very special subclass of cyclic
quotient singularities.

7.8. The class T of cyclic quotient singularities [58](5.9), [114], cf.
also with [40]

For a cyclic quotient singularity Xp,q, the following facts are equivalent:

(i) Z2
K ∈ Z;

(ii) (q + 1)2/p ∈ Z;



Some Meeting Points of Singularity Theory and Low Dimensional Topology 131

(iii) For some positive integers r, l and d with d ≤ r and gcd(d, r) = 1
one has p = r2l and q = drl − 1.

In fact, the integers r, l, d can be recovered from p and q by

l := gcd
(
q + 1, p, (q + 1)2/p

)
; rl := gcd(q + 1, p); drl := q + 1.

Notice that r = 1 implies d = 1, p = l and q = l − 1; hence in this case
(X, 0) is the RDP Al−1.

(iv) The minimal resolution graph can be recognized as follows: the
graph is either an Ak graph, or can be obtained by starting with one of the
graphs

�
−4

or
−3 −2 −2 −2 −3
� � � ��· · ·

and iterating a few times (in an arbitrary order) the next step. By one step,
change [b1, . . . , bk] to either [2, b1, . . . , bk−1, bk + 1] or [b1 + 1, b2, . . . , bk, 2]
and take the corresponding graph.

7.8.1. Definitions. A cyclic quotient singularity satisfying one of the above
properties is called of class T. For any such singularity one defines def ′(Xp,q)
to be l if r > 1, respectively to be l − 1 if r = 1.

In [40], the key object which provides valuable information about the
irreducible components of B is the set of P -resolutions.

7.9. Definition

A P -resolution of a cyclic quotient singularity (X, 0) is a partial resolution
f : Y → X (i.e. a modification which is an isomorphism above X \ {0})
such that KY is ample relative to f (cf. next paragraph), and Y has only
singularities of class T .

7.9.1. Fix a modification f : Y → X. Let Fj (1 ≤ j ≤ k) be the set of
irreducible exceptional divisors of f , and set Sing (Y ) = {P1, . . . , Pl}. Let
ρ : X̃ → Y be the minimal resolution of Y , and set f ◦ ρ = π. Denote the
strict transform (via ρ) of Fj by F ′

j . Let Γi (1 ≤ i ≤ l) be the subgraph
of the resolution graph Γ(π) of π corresponding to the singular points Pi.
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Let ZK

(
Γ(π)

)
, respectively ZK(Γi) be the (anti)canonical cycle of Γ(π),

respectively of Γi.

Then KY is ample relative to f (i.e. KY · Fj > 0 for all j) if and only if

(ZK

(
Γ(π)

)
−∑i ZK(Γi)) · F ′

j < 0 for any 1 ≤ j ≤ k.

In particular, the set of P -resolutions can be determined combinatorially
from the plumbing graph of the link of (X, 0). The set of P -resolutions
is not empty. For example, the minimal RDP resolution of (X, 0) is a P -
resolution.

If f : Y → X is a P -resolution, set def ′(f) :=
∑l

i=1 def
′(Y, Pi)

(cf. 7.8.1).

The set of exceptional divisors F ′
j (1 ≤ j ≤ k) form h connected, pairwise

disjoint exceptional curves C1, . . . , Ch, each determining a cyclic quotient
singularity (Xj , Qj) (by contracting Cj into the point Qj). The dimension
of the Artin component of (Xj , Qj) is denoted by θ(Xj , Qj) (cf. 7.7). Set

θ(f) :=
∑h

j=1 θ(Xj , Qj).

7.9.2. [40, (3.14)]. When one searches for all the P -resolutions, the next fact
is very helpful: Any P -resolution is dominated by the maximal resolution
of (X, 0).

Here, a resolution π : X̃ → X is maximal if all the coefficients of ZK(π)
are strictly positive, and π is not dominated by any other resolution with this
property. Any cyclic quotient singularity has a unique maximal resolution.

Now, we can state (3.9) of [40] for the particular case of cyclic quotients.

7.10. Theorem [Kollár–Shepherd-Barron]

For any cyclic quotient singularity (X, 0), there is a one-to-one corre-
spondence between the set of P -resolutions of (X, 0) and the set of irre-
ducible components of the base space B of the semi-universal deformation
of (X, 0). If the component B(f) corresponds to the P -resolution f , then
dimB(f) = def ′(f) + θ(f).

Under this correspondence, the Artin component corresponds to the min-
imal RDP resolution.

The correspondence between the pictures 7.7 and 7.10 is realized in [101].
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7.10.1. Example (Cf. with 6.3). Assume that the minimal resolution graph
of (X, 0) has only one vertex with gv = 0 and ev = −4. Then (X, 0) has two
P -resolution: the minimal resolution and the identity of (X, 0).

7.10.2. Example [40]. Assume that the minimal resolution X̃ of (X, 0) has
the dual graph:

� � �
−3 −4 −2

Consider also the resolution X̃ ′ → X with graph:

� � � �
−4 −1 −5 −2

Then (X, 0) has three P -resolutions Y1, Y2 and Y3. Y1 is the minimal RDP
resolution obtained from X̃ by contracting the (−2)-curve. Y2 is obtained
from X̃ by contracting the (−4)-curve. Finally, Y3 is obtained from X̃ ′ by
contracting all the curves except the (−1)-curve.

The corresponding dimensions of the irreducible components of B are 6,
4 and 2.

7.11. Remark

If (X, 0) is rational with mult (X, 0) ≤ 3 then the base space B is smooth.
See [37] and [102] for the description of the deformation of rational quadru-
ple points, [38] for minimal rational singularities, and [39] for sandwiched
singularities. All these descriptions are topological.

7.12. Kollár’s Conjectures

As we already mentioned, Kollár formulated a conjecture about the irre-
ducible components of B, in terms of P -resolutions, for any rational sin-
gularity [41]. He also stated a simplified version of this rather complex
conjecture as follows. Let (X, 0) be a rational singularity. Suppose that any
irreducible exceptional divisor of the minimal resolution of (X, 0) has self-
intersection at most −5. Then B has only one component, namely the Artin
component. This second conjecture was verified for cyclic quotients [101]
and minimal rational singularities [39].
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8. Elliptic Singularities

8.1.

Recall that for any fixed resolution graph Γ(π) of a normal surface singular-
ity (X, 0) one has χ(Zmin) ≤ 1. Similarly, minZ>0 χ(Z) ≤ 1. By 7.2, (X, 0)
is rational if and only if χ(Zmin) = 1, or equivalently, minZ>0 χ(Z) = 1.
Similarly, χ(Zmin) = 0 if and only if minZ>0 χ(Z) = 0. Laufer in [45, page
1281] proved this via the theory of analytic deformations. For a combina-
torial proof see [62, (4.3)].

8.2. Definition (Wagreich [111], Laufer [45])

(X, 0) is called elliptic if Γ(π) is elliptic. Γ(π) is elliptic if minZ>0 χ(Z) = 0,
or equivalently, χ(Zmin) = 0. The definition is independent of the choice of
the resolution.

Laufer in [45] identified topologically a subclass of elliptic singularities
for which pg is topological (in fact, pg = 1). It is the set of minimally
elliptic singularities. They are defined via their minimally elliptic cycle.
Let π be the minimal resolution. A cycle Z > 0 is called minimally elliptic
if χ(Z) = 0 and for any 0 < D < Z one has χ(D) > 0. Laufer proved that
if χ(Zmin) = 0 then there is a unique minimally elliptic cycle. It will be
denoted by C. Clearly, by its minimality, C ≤ Zmin.

Notice also that if (X, 0) is numerically Gorenstein, then ZK associated
with the minimal resolution is in Ztop, hence Zmin ≤ ZK .

8.3. Theorem. Minimally elliptic singularities [45]

Consider the minimal resolution π of (X, 0). Then the following statements
are equivalent. If a singularity satisfies them, it is called minimally elliptic.

(i) (X, 0) is numerically Gorenstein and ZK = Zmin.

(ii) χ(Zmin) = 0 and any proper subgraph of Γ(π) supports a rational
singularity.

(iii) (X, 0) is numerically Gorenstein and ZK is a minimally elliptic cycle.
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(iv) Zmin is a minimally elliptic cycle.

(v) pg = 1 and (X, 0) is Gorenstein.

In particular, for minimally elliptic singularities Zmin = ZK = C.

8.3.1. Example. Assume that Γ(π) consists of only one vertex with gv = 1,
and arbitrary self-intersection ev. Then it is elliptic, and is called simple
elliptic of degree −ev. If ev ∈ {−1,−2,−3} then they are realized by the
hypersurface singularities

(
{xa + yb + zc + λxyz = 0}, 0

)
with (a, b, c) =

(2, 3, 6) (Ẽ8), (2, 4, 4) (Ẽ7) and (3, 3, 3) (Ẽ6). The case ev = −4 is realized
by the complete intersection (D̃5)

{
x2 + y2 + λzw = xy + z2 + w2 = 0

}
.

8.3.2. Example. Dolgachev’s triangle singularity D−e1,−e2,−e3. As-
sume that the resolution graph Γ has the following form with gv = 0 for
all v:

E0
−1

E1
e1

E2
e2

es
Es

� �

�

�

�
��

�
��

The intersection matrix is negative definite if and only if 1+
∑

v>0 1/ev >
0. Note that Zmin 
= ZK . But in this case Γ is not minimal: E0 is a rational
(−1)-curve, so it should be contracted. Then in the new minimal graph,
ZK = Zmin =

∑
Ev.

The next theorem was obtained by Laufer and Reid; M. Tomari also
proved similar results for elliptic singularities in the presence of some addi-
tional assumptions [108].

8.4. Theorem [45, 91]

Assume that (X, 0) is a minimally elliptic singularity. Let Zmin be the
fundamental cycle in the minimal resolution π. Then:

(a) Zmin = Zmax;

(b) If Z2
min ≤ −2, then π∗(m0) = O(−Zmin), hence mult (X, 0) =

−Z2
min;
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(c) If Z2
min = −1, then π∗(m0) = mQO(−Zmin) for a smooth point Q

of E, and mult (X, 0) = 2;

(d) embdim (X, 0) = max
(
3,−Z2

min

)
;

(e) If Z2
min ≤ −3 then dimOX,0/m

k
0 = χ(OkZmin

)+ 1 and dimmk
0/m

k+1
0

= −kZ2
min (k ≥ 1).

For more about elliptic singularities, see [45, 63]. For deformation
invariants of minimally elliptic singularities, see Wahl’s paper [114] and
the references therein.

9. Links and Fillings form Contact Geometry Point of

View

9.1. Contact structures on the link

One of the objects which connects local complex analytic singularities with
low-dimensional topology is the link of isolated singularities. One defines
a contact structure on a singularity link as follows. Fix an embedding
(X, 0) ⊂

(
CN , 0

)
. Then the distance function ρ :=

∑N
k=1 |zk|2 is strict pseu-

dosubharmonic, and ξ := TM ∩ J(TM), the J-invariant subspace of TM ,
defines a contact structure on M . Its isotopy class is called the canonical
contact structure of M induced by the analytic structure of (X, 0). (Here J
is the almost complex structure of TX.)

This definition imposes several questions/problems for any fixed M :

1. Classify all the possible contact structures induces by different analytic
structures supported by the topological type determined by M .

2. How is the subclass from (1) related with the class of all contact
structures of M?

A partial answer to (1) was given in [16, 17]: all the possible (canonical)
contact structures induces by different analytic structures are contactomor-
phic. Notice again that this fact is not valid in higher dimensions, see
Ustilovsky’s work [109].

In fact, we conjecture that all the possible (canonical) contact structures
induces by different analytic structures are even isotopic. But, definitely,
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in order to prove this (or even to state this) one needs first to provide a
canonical construction which identifies the link M up to an isotopy (and
independently of the supported analytic structure); the existing plumbing
construction identifies M only up to an orientation preserving diffeomor-
phism.

Although there is an intense activity in classification of contact struc-
tures, and a considerably impressive list of positive results finishing the
classification for lens spaces, torus bundles over circles, circle bundles over
surfaces, some Seifert manifolds (thanks to the work of Giroux, Etnyre,
Honda, Lisca, Stipsicz and others, see e.g. [28, 29, 35, 36, 54] and the refer-
ences listed therein), Part (2) is mainly open. Recall that a contact structure
is either overtwisted or tight, and all overtwisted structure are character-
ized by the homotopy of their underlying oriented plane field (by a result
of Eliashberg). Hence, the difficulty appears in the classification of tight
structures. The canonical structure is one of them. Surprisingly, even the
finiteness of the possible tight structures on M is not guaranteed in general
(as was shown by Colin, Giroux and Honda [20]): although the number of
corresponding homotopy classes of plane fields is finite, the number of iso-
topy classes of tight contact structures is finite if and only if M is atoroidal
(i.e. the minimal resolution graph is star-shaped with at most three ‘legs’,
and all genus decorations are zero). It is also not clear at all how one can
identify in this multitude of structures the canonical one.

In the sequel the canonical contact structure will be denoted by
(M, ξcan).

9.2. Fillings of (M, ξcan)

Although in the literature there are many different versions of fillability
(holomorphic, Stein, strong/weak symplectic), here we will deal only with
Stein one: any Stein manifold whose contact boundary is contactomorphic
to (M, ξcan) is a Stein filling of (M, ξcan). For a singularity link, the following
questions/problems are natural:

1. Is any (M, ξcan) Stein fillable?

2. Classify all the Stein fillings of (M, ξcan).

3. Determine all the Stein fillings ‘coming from singularity theory’.
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The answer to (1) is yes: Consider the minimal resolution of (X, 0). It is
a holomorphic, non-Stein filling of (M, ξcan), but by a theorem of Bogomolov
and de Oliveira [11] this holomorphic structure can be deformed into a Stein
one. This construction already provides an example for (3); another one is
given by the Milnor fibers of the smoothings of different analytic realizations
(X, 0) of the topological type fixed by M (if there are any). More precisely,
the existence (and uniqness) of the miniversal deformation of isolated sin-
gularities is guaranteed by results of Schlessinger [95] and Grauert [32]. In
general, its base space has many irreducible components. A component is
called smoothing component if the generic fiber over it (the so-called Milnor
fiber) is smooth. In general, different analytic structures might have differ-
ent smoothings; or for a fixed (X, 0), different smoothing components might
produce diffeomorphic Milnor fibers. It might also happen that smoothings
do not exist at all (for the last two situation see e.g. the case of some simple
elliptic singularities [58, 80]).

In fact, in the literature basically only these two constructions are
present regarding (3); it is a high desire to find some other general con-
structions too. We notice that rational singularities are always smoothable,
moreover, the Milnor fiber of one of the smoothing component (the Artin
component) is diffeomorphic with the space of the minimal resolution.

The list regarding part (2) starts with a result of Eliashberg [25] showing
that

(
S3, ξcan

)
has only one Stein filling (up to diffeomorphism), namely the

ball. For links of simple and simple elliptic singularities the classification was
finished by Ohta and Ono [80, 81]. Moreover, in all these cases all possible
Stein fillings are provided by the minimal resolution or Milnor fibers. This
parallelism sometimes is really striking. E.g. for simple elliptic singularities
with degree k > 0, Ohta and Ono proved that the existence of a Stein filling
with vanishing first Chern class imposes k ≤ 9. This can be compared with
the fact that in the case of a Milnor fiber the Chern class is vanishing
(by [96]) and the smoothability condition is the same k ≤ 9 (cf. [86]).

Fillings of links of lens spaces L(p, q) were classified by Lisca [52, 53]
(as a generalization a result of McDuff [59] valid for the spaces L(p, 1), for
all p ≥ 2), and of quotient surface singularities by Bhupal and Ono [10].
We will return to Lisca’s result in the next section showing that Lisca’s list
agrees perfectly with the list of Milnor fibers (or, with the smoothing/all
deformation components).

We would like to notice that this phenomenon, namely that all the
Stein fillings are obtained either by minimal resolution or Milnor fibers – at
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some point of the singularity complexity – might stop. This emphasizes the
importance of the research in direction (3) even more.

Moreover, in general, the finiteness of the Stein fillings might fail too:
Ohta and Ono produced on some singularity links infinitely many symplectic
fillings [82], also Ozbagci and Stipsicz in [85], and independently Smith
in [97], have shown that certain contact structures have infinitely many
Stein fillings (although they are not singularity links, one expects that at
some moment similar fact will be established for some singularity links as
well). For similar result see also the recent article [1] too.

9.3. (M, ξcan) and open books

By a result of Giroux [30], there is a one-to-one correspondence between
open book decompositions of M (up to isotopy and stabilization) and pos-
itive (that is, which induces the ambient orientation) contact structures
on M (up to isotopy).

The linkM of a normal surface singularity (X, 0) admits a natural family
of open book decompositions, the so-called Milnor open books. They are cut
out by analytic germs f : (X, 0)→ (C, 0) which define isolated singularities.
If Lf ⊂ M denotes the (transversal) intersection of f−1(0) with M , then
the Milnor fibration of f defines an open book decomposition of M with
binding Lf . By [17], all the Milnor open book decompositions support
the same contact structure on M , namely the canonical contact structure
(M, ξcan). Section 12 contains a more detailed discussion about Milnor open
books and their invariants.

10. Fillings. The Case of Cyclic Quotient Singularities

10.1.

In this section we assume that (X, 0) = (Xp,q, 0) is a cyclic quotient
(or Hirzebruch–Jung) singularity. Its oriented link is the oriented lens
space L(p, q). Recall that (Xp,q, 0) is taut and rational.

For cyclic quotient singularities the classification of the Stein fillings of
(M, ξcan) and their connection with Milnor fibers and Milnor open books
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is completely understood. In this section we review this problem; the
presentation follows [72].

10.2. Notations

If x = (x1, . . . , xn) are variables, the Hirzebruch–Jung continued fraction
[x1, . . . , xn] can be defined by induction on n through the formulae: [x1] = x1
and [x1, . . . , xn] = x1 − 1/[x2, . . . , xn] for n ≥ 2. One shows that:

[x1, . . . , xn] =
Zn(x1, . . . , xn)

Zn−1(x2, . . . , xn)
,

where the polynomials Zn ∈ Z[x1, . . . , xn] satisfy the inductive formulae:

Zn(x1, . . . , xn) = x1 · Zn−1(x2, . . . , xn)− Zn−2(x3, . . . , xn) for all n ≥ 1,
(10.2.1)

with Z−1 ≡ 0, Z0 ≡ 1 and Z1(x) = x. In fact, Zn(x) equals the determi-
nant of the n× n-matrix M(x), whose entries are Mi,i = xi, Mi,j = −1 if
|i− j| = 1, Mij = 0 otherwise. Hence, besides (10.2.1), they satisfy many
‘determinantal relations’ too; e.g. Zn(x1, . . . , xn) = Zn(xn, . . . , x1). Follow-
ing [84], x ∈ Nn is admissible if the matrix M(x) is positive semi-definite of
rank ≥ n− 1. Denote by adm (Nn) the set of admissible n-tuples.

If x is admissible and n > 1, then each xi > 0. Moreover, if [x1, . . . , xn]
is admissible then [xn, . . . , x1] is admissible too. For any r ≥ 1, denote:

Kr :=
{
k = (k1, . . . , kr) ∈ adm (Nr) | [k1, . . . , kr] = 0

}
.

For k = (k1, . . . , kr) ∈ Kr set k′ := (kr, . . . , k1) ∈ Kr.

For p, q as above and HJ-expansion p
p−q = [a1, . . . , ar], set:

Kr

(
p

p− q

)
= Kr(a) := {k ∈ Kr | k ≤ a} ⊂ Kr.

Here, k ≤ a means that ki ≤ ai for all i.
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10.3. Lisca’s Conjecture

We recall briefly the classification of fillings of lens spaces (endowed with
their canonical contact structure) established by Lisca. He provides by
surgery diagrams a list of compact oriented 4-manifoldsWp,q(k) with bound-
ary L(p, q). They are parametrized by the set Kr( p

p−q) of sequences of in-
tegers k ∈ Nr (cf. (10.2)). He showed that each manifold Wp,q(k) admits a
structure of Stein surface, filling

(
L(p, q), ξcan

)
, and that any symplectic fill-

ing of
(
L(p, q), ξcan

)
is orientation-preserving diffeomorphic to a manifold

obtained from one of the Wp,q(k) by a composition of blow-ups. In gen-
eral, the oriented diffeomorphism type of the boundary and the parameter
k does not determine uniquely the (orientation-preserving) diffeomorphism
type of the fillings: for some pairs the corresponding types might coincide
(see subsection (10.8) for this ‘ambiguity’).

Lisca also noted that, following the works of Christophersen [18] and
Stevens [101], Kr( p

p−q) parametrizes also the irreducible components of
the reduced miniversal base space of deformations of the cyclic quotient
singularity Xp,q. Since each component of the miniversal space is in this
case a smoothing component, Lisca conjectured in [53, page 768] that the
Milnor fiber of the irreducible component of the reduced miniversal base space
of the cyclic quotient singularity Xp,q, parametrized in [101] by k ∈ Kr( p

p−q)
is diffeomorphic to Wp,q(k).

On the other hand, in [39], de Jong and van Straten studied by an ap-
proach completely different from Christophersen and Stevens the deforma-
tion theory of cyclic quotient singularities (as a particular case of sandwiched
singularities). They also parametrized the Milnor fibers of Xp,q using the
elements of the set Kr( p

p−q). Hence, one can formulate the previous con-
jecture for their parametrization as well.

10.4. The answers to the (improved) conjecture

[72] answers positively these questions. Its main results are the following:

1. One defines an additional structure associated with any (non-neces-
sarily oriented) lens space: the ‘order’. Its meaning is the following:
geometrically it is a (total) order of the two solid tori separated by
the (unique) splitting torus of the lens space; in plumbing language,
it is an order of the two ends of the plumbing graph (provided that
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this graph has at least two vertices). Then one shows that the oriented
diffeomorphism type and the order of the boundary, together with the
parameter k determines uniquely the filling.

2. One endows in a natural way all the boundaries of the spaces in-
volved (Lisca’s fillings Wp,q(k), Christophersen–Stevens’ Milnor fibers
Fp,q(k), and de Jong–van Straten’s Milnor fibers F ′

p,q(k)) with orders
(this extra structure is denoted by ∗). Then one proves that all these
spaces are connected by orientation-preserving diffeomorphisms which
preserve the order of their boundaries: Wp,q(k)

∗ � Fp,q(k)
∗ � F ′

p,q(k)
∗.

This is an even stronger statement than the result expected by Lisca’s
conjecture since it eliminates the ambiguities present in Lisca’s clas-
sification.

3. In fact, [72] even provides a fourth description of the Milnor fibers
constructed by a minimal sequence of blow ups of the projective plane
which eliminates the indeterminacies of a rational function which de-
pends on k. This is in the spirit of Balke’s work [6].

4. As a byproduct it follows that both Christophersen–Stevens and de
Jong–van Straten parametrized the components of the miniversal base
space in the same way.

5. Moreover, one obtains that the Milnor fibers corresponding to the var-
ious irreducible components of the miniversal space of deformations of
Xp,q are pairwise non-diffeomorphic by orientation-preserving diffeo-
morphisms whose restrictions to the boundaries preserve the order.

In the sequel we will not say more about Lisca’s construction, instead, we
will describe briefly the Milnor fibers associated with the different smoothing
components, with a special emphasis on the construction (10.4)(3). This will
be compatible with the description of Christophersen and Stevens on the
structure of the reduced miniversal base space of cyclic quotients [9, 18, 103]
(cf. also with [2]). The de Jong–van Straten construction will be reviewed
in the next section.
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10.5.

First we concentrate on Xp,q. It can be embedded into Cr+2 by some regular
functions z0, . . . , zr+1. Some of the equations of the embedding are

(10.5.1) zi−1zi+1 − zaii = 0 for all i ∈ {1, . . . , r}.

Using equations (10.5.1) and induction, one shows that the restriction of
each zi to Xp,q is a rational function in (z0, z1) of the form

zi = z
Zi−1(a1,...,ai−1)
1 · z−Zi−2(a2,...,ai−1)

0 for i ∈ {1, . . . , r + 1}.

In particular, the restriction pr01 of the projection (z0, . . . , zr+1) �→ (z0, z1)
to Xp,q is birational, i.e. it is a ‘sandwiched representation’ of Xp,q (cf. next
section for the terminology). (Here a comment is in order. Recall that
Xp,q is minimal, hence, by a general construction, it admits a canonical
sandwiched representation pr : Xp,q → C2, see e.g. (11.1). We wish to
emphasize that the two birational maps pr01 and pr are different capturing
two different geometrical aspects about Xp,q.)

The equations of Xp,q are weighted homogeneous, however the weights
wi := w(zi) are not unique. With the choice w0 = w1 = 1 one has wi =
Zi−1(a1, . . . , ai−1) − Zi−2(a2, . . . , ai−1) for all i ≥ 1, and 1 = w0 = w1 ≤
w2 ≤ · · · ≤ wr+1 = q.

10.6. The deformations

Next, we fix k ∈ Kr(a), and we denote by SCS
k the corresponding deforma-

tion component (as it is described by Christophersen and Stevens). Then,
we consider a special 1-parameter deformation with equations E tk of Xp,q.
This deformation is determined by the deformed equations of (10.5.1) (cf.
[2], [101, (2.2)]). These are:

(10.6.1) zi−1zi+1 = zaii + t · zkii for all i ∈ {1, . . . , r},

where t ∈ C. Let X t
k be the affine space determined by the equations E tk in

Cr+2. One proves that the deformation t �→ X t
k has negative weight and is

a smoothing belonging to the component SCS
k . Hence, X t

k is a smooth affine
space for t 
= 0 (and by [115, (2.2)]) it is diffeomorphic to the Milnor fiber
of SCS

k .
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10.7. X t
k as a rational surface

Similarly as for Xp,q, using (10.6.1), on X t
k all the coordinates zi can be

expressed as rational functions in (z0, z1). Indeed, for each i ∈ {1, . . . , r+1},
on X t

k one has:

zi = z
−Zi−2(a2,...,ai−1)
0 Pi

for some Pi ∈ Z[t, z0, z1]. The polynomials Pi satisfy the inductive relations:

(10.7.1) Pi−1 · Pi+1 = P ai
i + tP ki

i · z
(ai−ki)·Zi−2(a2,...,ai−1)
0

with P1 = z1 and with the convention P0 = 1.

Consider the application π : C2 \ {z0 = 0} −→ X t
k given by

(z0, z1) �→ (z0, z1, P2, . . . , z
−Zi−2(a2,...,ai−1)
0 Pi, . . . , z

−(p−q)
0 Pr+1) ∈ Cr+2.

(10.7.2)

We are interested in the birational map C2 ��� X t
k, still denoted by π, and

its extension π : P2 ��� X t
k, where X t

k is the closure of X t
k in Pr+2.

Let ρ′k : B′P2 → P2 be the minimal sequence of blow ups such that π◦ρ′k
extends to a regular map B′P2 → X t

k. Let L∞ ⊂ P2 be the line at infinity

and by L0 the closure in P2 of {z0 = 0}. We use the same notations for their

strict transforms via blow ups of P2. Since the projection pr : X t
k → C2

is regular and pr ◦ π is the identity, one gets that π ◦ ρ′k sends L0 and the

total transform of L∞ in the curve at infinity X t
k \ X t

k.

Therefore, let us modify ρ′k into ρk : BP2 → P2, the minimal sequence

of blow ups which resolve the indeterminacies of π sitting in C2 (hence ρ′k
and ρk over C2 coincide). Denote by Eπ its exceptional curve and by Cπ

the union of those irreducible components of Eπ which are sent to C∞
k . Set

BC2 := BP2 \ L∞. Summing up all the above discussions, one obtains:

Theorem 10.7.1. The restriction of π ◦ ρk induces an isomorphism BC2 \
(L0 ∪ Cπ) → X t

k. In particular, the Milnor fiber can be realized as the

complement of the projective curve L∞ ∪ L0 ∪ Cπ in BP2.

The point is that the indeterminacies of π above C2, hence the mod-
ification ρk too, can be described precisely. This leads to the following
description of the Milnor fiber.
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Corollary 10.7.2. Consider the lines L∞ and L0 on P2 as above. Blow up
r− 1 +

∑r
i=1(ai − ki) infinitely closed points of L0 in order to get the dual

graph in Figure 1 of the configuration of the total transform of L∞∪L0 (this
procedure topologically is unique, and its existence is guaranteed by the fact
that k ∈ Kr(a)). Denote the space obtained by this modification by BP2.
Then the Milnor fiber X t

k of SCS
k is diffeomorphic to BP2 \ (∪rj=0Vj).

Moreover, let T be a small open tubular neighbourhood of ∪rj=0Vj , and

set Fp,q(k) = BP2 \ T . Then Fp,q(k) is a representative of the Milnor fiber
of SCS

k as a manifold with boundary whose boundary is L(p, q).

Furthermore, the marking {Vi}i as in the Figure 1, defines on the bound-
ary of Fp,q(k) an order; denote this supplemented space by Fp,q(k)

∗. Then
its ordered boundary is L(p, q)∗ endowed with the preferred order.
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a1 − k1 a2 − k2 ar − kr

︸︷︷︸ ︸︷︷︸ ︸︷︷︸
Figure 1

Remark 10.7.3. In fact, ρk serves also as the minimal modification which
eliminates the indeterminacy of the last component of π from (10.7.2),
namely of the rational function zr+1 = Pr+1/z

p−q
0 . In particular, we find

the following alternative description of the Milnor fiber Fp,q(k):

For each k ∈ Kr(a), define the polynomial Pr+1 via the inductive system
(10.7.1). Let ρk : BP2 → P2 be the minimal modification of P2 which

eliminates the indeterminacy points of Pr+1/z
p−q
0 sitting in C2. Then

the dual graph of the total transform of L∞ ∪ L0 has the form indicated
in Figure 1, and Fp,q(k) is orientation-preserving diffeomorphic to BP2 \
(∪rj=0Vj).

10.8. An identification criterion of the Milnor fibers

The next criterion generalizes Lisca’s criterion [53, §7] to recognize the
fillings of L(p, q), it is valid for the spaces with ordered boundaries. It also
implies immediately part (2) of (10.3), namely that Wp,q(k)

∗ � Fp,q(k)
∗.
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Associate to the sequence a the string G(a) decorated with the entries
a1, . . . , ar (this might also serve as the minimal resolution graph of Xp,p−q).
Regarded G(a) as a plumbed graph, it determines the plumbed 4-manifold
Π(a) (which is diffeomorphic to the minimal resolution space of Xp,p−q),
whose oriented boundary is −L(p, q) (L(p, q) with opposite orientation).

Let F be a Stein filling of (L(p, q), ξcan), e.g. one of the Milnor fibers
considered above. Set V for the closed 4-manifold obtained by gluing F and
Π(a) via an orientation preserving diffeomorphism φ : ∂F → ∂

(
− Π(a)

)
of their boundaries. Denote by {si}1≤i≤r the classes of 2-spheres {Si}1≤i≤r

in H2

(
Π(a)

)
(listed in the same order as {ai}1≤i≤r), and also their images

via the monomorphism H2

(
Π(a)

)
→ H2(V ) induced by the inclusion.

Lisca’s criterion (implied also by the results of (10.7)) reads as follows:

Proposition 10.8.4. For all i ∈ {1, . . . , r} one has

#
{
e ∈ H2(V ) | e2 = −1, si · e 
= 0, sj · e = 0 for all j 
= i

}
= 2(ai − ki)

for some k ∈ Kr(a). In this way one gets the pair (a, k) and F is orientation-
preserving diffeomorphic to Fp,q(k)

(
� Fp,q′(k

′)
)
.

One verifies that the above criterion is independent of the choice of the
diffeomorphism φ. In fact, even the diffeomorphism type of the manifold V
is independent of the choice of φ.

Notice that {Si}1≤i≤r and {Sr−i}1≤i≤r cannot be distinguished, hence
the above algorithm does not differentiate (a, k) from (a′, k′), or Fp,q(k)
from Fp,q′(k

′). On the other hand, these are the only ambiguities. (In
fact, if r = 1, or even of r > 1 but a and k are symmetric, then there is no
ambiguity, since (p, q, k) = (p, q′, k′).)

Using the notion of order of the boundaries, one can eliminate the above
ambiguity. Notice that any diffeomorphism Fp,q(k) → Fp,q′(k

′) (whenever
(p, q, k) 
= (p, q′, k′)) does not preserve any fixed order of the boundary. One
has:

Theorem 10.8.5. All the spaces Fp,q(k)
∗ are different, hence their bound-

aries L(p, q)∗ and k ∈ Kr(a) determine uniquely all the Milnor fibers up
to orientation-preserving diffeomorphisms which preserve the order of the
boundary.

In order to prove this, the criterion (10.8.4) is modified as follows. Let F ∗

be a Stein filling of
(
L(p, q), ξcan

)
with an order on its boundary. Consider
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Π(a)∗ with its preferred order (provided a well-determined order of the si’s,
cf. [72]). Construct V as in (10.8.4), and consider the two pairs (q, k) and
(q′, k′) provided (but undecided) by (10.8.4).

Proposition 10.8.6. If φ preserves (resp. reverses) the orders of the bound-
ary then F ∗ is orientation and order preserving diffeomorphic to Fp,q(k)

∗

(resp. to Fp,q′(k
′)∗).

11. Fillings. The Case of Sandwiched Singularities

11.1.

For the definition of minimal rational and sandwiched singularities see 7.3.

In [39] de Jong and van Straten related the theory of sandwiched surface
singularities with decorated plane curve singularities.

Consider a reduced germ of plane curve (C, 0) ⊂
(
C2, 0

)
with numbered

branches (irreducible components) {Ci}1≤i≤r. Fix the minimal (not neces-
sarily good) embedded resolution of (C, 0) obtained by a sequence of blow
ups. The multiplicity sequence associated with Ci is the sequence of mul-
tiplicities on the successive strict transforms of Ci, starting from Ci itself
and not counting the last strict transform. The total multiplicity m(i) of Ci

with respect to C is the sum of the sequence of multiplicities of Ci.

A decorated germ of plane curve is a weighted germ (C, l) such that
l = (li)1≤i≤r ∈ (N∗)r and li ≥ m(i) for all i ∈ {1, . . . , r}.

Starting from a decorated germ, one can blow up iteratively points in-
finitely near 0 on the strict transforms of C, such that the sum of multi-
plicities of the strict transform of Ci at such points is exactly li. Such a
composition of blow-ups is determined canonically by (C, l). If li is suffi-
ciently large (in general, larger than m(i)) then the union of the exceptional
components which do not meet the strict transform of C form a connected
configuration of (compact) curves E(C, l). After the contraction of E(C, l),
one gets a sandwiched singularity X(C, l), determined uniquely by (C, l)
(for details see [39]). This follows from the fact that the collection of the
irreducible components of the exceptional curve E not contained in E(C, l)
are exactly the (−1) curves involved in the definition of sandwiched singu-
larities. Conversely, for any sandwiched singularity X one can find (C, l)
such that X can be represented as X(C, l).
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11.2. Markings of the links [73]

By a result of Neumann [75], the information codified in the link of a sur-
face singularity up to an orientation-preserving homeomorphism and in the
weighted dual graph of the minimal good resolution are equivalent. In [89,
Theorems 9.1 and 9.7] this is generalized as follows. From the resolution,
the abstract link inherits a plumbing structure, that is, a family of pair-
wise disjoint embedded tori whose complement is fibered by circles, and
such that on each torus the intersection number of the fibers from each side
is ±1. (The tori correspond to the edges of the dual graph and the con-
nected components of their complement – the “pieces of M” – correspond
to the ‘un-numbered vertices’.) Then, by [89, Theorem 9.7], the plumb-
ing structure corresponding to the minimal normal crossings resolution is
determined up to an isotopy by the oriented link.

Consider againX(C, l) associated with some (C, l), and letM be its link.
Using the notations of the previous subsection, write E = E(C, l)+

∑r
i=1Ei,

where (Ei)1≤i≤r is numbered such that Ei is the unique irreducible compo-
nent which intersects the strict transform of Ci. Denote by Fi the unique
irreducible component of E(C, l) which intersects Ei. To Fi corresponds
a well-defined “piece” of M . In this way, one gets a map from the set
{1, . . . , r} to the set of pieces of M .

Definition 11.2.1. A map from {1, . . . , r} (the index set of the numbered
branches of C) to the set of “pieces” of M obtained as above is called a
marking of M .

Hence, each realization of M as the link of some X(C, l), where (C, l) is
a decorated curve with numbered branches, provides a well-defined marking
of M .

11.3. Deformation of sandwiched singularities after de Jong and
van Straten

The point is that the above correspondence between sandwiched singulari-
ties and decorated plane curves extends to their deformation theory as well.

The total multiplicity of Ci with respect to C may be encoded also as
the unique subscheme of length m(i) supported on the preimage of 0 on the
normalization of Ci. This allows to define the total multiplicity scheme m(C)
of any reduced curve contained in a smooth complex surface, as the union
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of the total multiplicity schemes of all its germs. Given a smooth complex
analytic surface Σ, a pair (C, l) consisting of a reduced curve C ↪→ Σ and a
subscheme l of the normalization C̃ of C is called a decorated curve if m(C)
is a subscheme of l ([39, (4.1)]). The deformations of (C, l) considered by
de Jong and van Straten are:

Definition 11.3.1 ([39, p. 476]). (i) A 1-parameter deformation of a dec-
orated curve (C, l) over a germ of smooth curve (S, 0) consists of:

(1) a δ-constant deformation CS → S of C;

(2) a flat deformation lS ⊂ C̃S = C̃ × S of the scheme l, such that:

(3)mS ⊂ lS , where the relative total multiplicity scheme mS of C̃S → CS

is defined as the closure
⋃

s∈S\0m(Cs).

(ii) A 1-parameter deformation (CS , lS) is called a picture deformation
if for generic s 
= 0 the divisor ls is reduced.

The singularities of Cs �=0 are only ordinary multiple points. Hence, it
is easy to draw a real picture of a deformed curve, which motivates the
terminology.

Theorem 11.3.2 ([39, (4.4)]). All the 1-parameter deformations of X(C, l)
are obtained by 1-parameter deformations of the decorated germ (C, l).
Moreover, picture deformations provide all the smoothings of X(C, l).

Next, let us fix a decorated germ (C, l) and one of its picture deforma-
tions (CS , lS). Fix a closed Milnor ball B for the germ (C, 0). For s 
= 0
sufficiently small, Cs will have a representative in B, denoted by D, which
meets ∂B transversally. It is a union of immersed discs {Di}1≤i≤r canoni-
cally oriented by their complex structures (and whose set of indices corre-
spond canonically to those of {Ci}1≤i≤r). The singularities of D consist of
ordinary multiple points.

Denote by {Pj}1≤j≤n the set of images in B of the points in the support
of ls. It is a finite set of points which contains the singular set of D (because
ms ⊂ ls for s 
= 0), but it might contain some other ‘free’ points as well.
There is a priori no preferred choice of their ordering. (Hence, the matrix
introduced next is well-defined only up to permutations of columns.)

The Milnor fiber of the smoothing associated with the fixed picture
deformation has the following description. Let β : (B̃, D̃)→ (B,D) be the
simultaneous blow-up of the points Pj of D. Here D̃ := ∪1≤i≤rD̃i, where
D̃i is the strict transform of the disc Di by the modification β. Let Ti be
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a sufficiently small open tubular neighbourhood of D̃i in B̃ (with pairwise
disjoint closures).

Proposition 11.3.3 ([39, (5.1)]). Let (C, l) be a standard decorated germ.
Then the Milnor fiber of the smoothing of X(C, l) corresponding to the
picture deformation (CS , lS) is orientation-preserving diffeomorphic to the
compact oriented manifold with boundary F ′ := B̃ \ (

⋃
1≤i≤r Ti) (whose

corners are smoothed).

Moreover, by this presentation (for a fixed (C, l)) one can also canoni-
cally identify the boundaries of all the Milnor fibers with the link.

Finally, one reads from the above deformation a combinatorial object
too, which will be crucial in the sequel:

Definition 11.3.4 ([39, page 483]). The incidence matrix of a picture
deformation (CS , lS) is the matrix I(CS , lS) with r rows and n columns
whose entry at the i-th row and the j-th column is the multiplicity of Pj as
a point of Di.

11.4. The characterization of the Milnor fibers by the incidence
matrix

First, let us start with some general remarks. Obviously, the main goal
would be to extend for sandwiched singularities the statements of (10.4),
valid for cyclic quotients. This is obstructed seriously in both sides of the
correspondence. First, at this moment there is no classification of the Stein
fillings of the canonical contact structures of sandwiched singularity links.
Second, there is no classification of the smoothing components either, or of
the possible Milnor fibers. (Recall that in principle it might happen that
several different smoothing components have the same Milnor fiber. Also,
it is also still open the characterization of those ‘combinatorial’ picture
deformations which can be analytically realized.)

Nevertheless, we have the following characterization result, which pro-
vides a homological/combinatorial method to ‘separate’ some Milnor fibers
associated with different smoothing components. In the next paragraphs
we follow [73].

Theorem 11.4.1. (a) The incidence matrix I(CS , lS) associated to a pic-
ture deformation of a decorated germ (C, l) is determined (up to a permu-
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tation of its columns) by the associated Milnor fiber and the marking of the
link.

(b) Consider two topologically equivalent decorated germs of plane
curves, and for each one of them a picture deformation. If their incidence
matrices are different up to permutation of columns, then their associated
Milnor fibers are not diffeomorphic by an orientation preserving diffeomor-
phism which preserves the markings of the boundaries.

The proof is based on a construction which glues a special universal
“cap” to each Milnor fiber. This is explained in the next subsection.

11.5. Closing the boundary of the Milnor fiber

Let (CS , lS) be a picture deformation of the decorated germ (C, l).

As the disc-configuration D is obtained by deforming C, its boundary
∂D := ∪1≤i≤rDi ↪→ ∂B is isotopic as an oriented link to ∂C ↪→ ∂B.
Therefore, we can isotope D outside a compact ball containing all the
points Pj till its boundary coincides with the boundary of C. From now
on, D will denote the result of this isotopy. Let (B′, C ′) be a second copy
of (B,C), and define:

(V,Σ) := (B,D) ∪id (−B′,−C ′).

Here V is the oriented 4-sphere obtained by gluing the boundaries of B
and −B′ by the tautological identification, and Σ := ∪ri=1Σi, where Σi is
obtained by gluing Di (perturbed by the above isotopy) and −C ′

i along their
common boundaries. Moreover, one also glues (−B′,−C ′) with (B̃, D̃) in
such a way that the blow-up morphism β may be extended by the identity
on−B′, yielding β : (Ṽ , Σ̃) −→ (V,Σ). Here Σ̃ := ∪ri=1Σ̃i, where Σ̃i denotes
the strict transform of Σi, i.e. Σ̃i = D̃i∪−C ′

i. Since C
′
i is a topological disc,

and Di is an immersed disc, Σ̃i is a topologically embedded 2-sphere in Ṽ .
Write T :=

⋃
1≤i≤r Ti and set

U := −B′ ∪ T.

Since F ′ = B̃\T (cf. 11.3.3), the closed oriented 4-manifold Ṽ is obtained
by closing the boundary of F ′ by the cap U . The point is that U is
independent of the chosen picture deformation and it is always glued in
the same way (up to an isotopy) to the boundaries of all the involved Milnor
fibers.
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In particular, the homology of Ṽ serves as an invariant of the Milnor
fiber F ′. More precisely one has the next statement (which generalizes the
‘identification criterion’ (10.8.4), and implies (11.4.1) too):

Proposition 11.5.1. (a) Up to permutations of columns, there exists a
unique basis (ej)1≤j≤n of H2(Ṽ ) such that e2j = −1 for all j, and the matrix

N(CS , lS) :=
(
[Σ̃i] · ej

)
1≤i≤r,1≤j≤n

has only non-negative entries.

(b) For any picture deformation (CS , lS), the incidence matrix I(CS , lS)
is equal to N(CS , lS), up to a permutations of the columns.

Corollary 11.5.2. Let (M, ξcan) be a link of a sandwiched singularity
endowed with its canonical contact structure. Fix the topological type of
a defining decorated germ. Then there are at least as many Stein fillings
(up to diffeomorphisms fixed on the boundary) of (M, ξcan) as there are
incidence matrices (up to permutation of columns) realised by the picture
deformations of all the decorated germs with the given topology.

The above corollary captures all the Milnor fibers associated with all the
analytic structures supported by (the cone over) M . Notice that it might
happen that some Milnor fibers of one of the analytic structure cannot be
realized by another analytic structure.

12. Milnor Open Books

12.1. Notations

As we already mentioned in (9.3), (M, ξcan) can be studied via Milnor
open books. On the other hand, Milnor open books can also be studied
via the combinatorics of the resolutions. In this section we assume that
M is a RHS. For any fixed resolution (graph) we consider the lattice
L := (Z|V|, (·, ·)), and in order to emphasize the graph Γ, we write ZΓ

an and

ZΓ
top instead of Zan and Ztop.

Recall that for rational singularities ZΓ
an = ZΓ

top, hence Zmax = Zmin too.

But, in general, these equalities do not hold: the structure of ZΓ
an (hence the



Some Meeting Points of Singularity Theory and Low Dimensional Topology 153

identification of Zmax too) can be very difficult, it depends essentially on the
analytic structure of (X, 0). (Maybe the most general result in this direction
is the combinatorial description of ZΓ

an for any splice-quotient singularity,
a family which includes all the weighted homogeneous singularities as well,
cf. [66].)

12.2. (Milnor) open books

One has the following facts for the Milnor open book decompositions of M ,
cf. 9.3.

1. For any such f ∈ OX,0, consider an embedded good resolution π of
the pair

(
X, f−1(0)

)
. Then the strict transform S(f) := div (π∗f) −

(f)E intersects E transversally, and the number of intersection points(
S(f), Ev

)
is exactly −

(
(f)E , Ev

)
. Since the intersection form is

negative definite, the collection of binding components {(S(f), Ev

)}
v

and (f)E ∈ ZΓ
an determine each other.

Moreover, by classical results of Stallings and Waldhausen, the (topo-
logical type of the) binding Lf ⊂M determines completely the open
book up to an isotopy, provided that M is a rational homology sphere.
(For counterexamples for these statement in the general case, see
e.g. [64].)

In particular, all the Milnor open book decompositions associated
with a fixed analytic type (X, 0) are completely described by the
semi-groups

{
ZΓ
an

}
Γ
(associated with all the possible resolutions and

natural identifications of elements of them). Hence, the classification
of all the Milnor open books associated with a fixed analytic type
(X, 0) is, in fact, as difficult as the determination of the semi-groups
ZΓ
an of ZΓ

top.

2. Therefore, from topological points of view, it is more natural to con-
sider the open books of all the analytic germs associated with all the
analytic structures supported by the topological type of some (X, 0).

As we already mentioned, for a fixed topological type of (X, 0), in
any (negative definite) plumbing graph Γ of M one can also define
the cone ZΓ

top. The point is that for any D ∈ ZΓ
top there is a conve-

nient analytic structure on (X, 0) and an analytic germ f , such that
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the plumbing graph can be identified with a dual embedded resolu-
tion graph (for the pair

(
X, f−1(0)

)
), and D is the compact part

(f)E [76]. Hence, modifying the analytic structure of (X, 0), we fill by
the collections ZΓ

an all the semi-group ZΓ
top.

In particular, the collection of all the Milnor open book decomposi-
tions associated with a fixed topological type M is described by the
collection of semi-groups

{
ZΓ
top

}
Γ
(considered in all the possible res-

olution graphs with a natural identifications of elements of them).

3. For any fixed analytic type (X, 0), the open book associated with Zmax

is the Milnor fibration of the generic hyperplane section, in particular
this open book is (resolution) graph-independent. Similarly, for a fixed
topological type of (X, 0), the open book associated with Zmin is also
graph-independent, it depends only on the topology of the link.

12.3. Invariants of Milnor open books

From the above correspondence, any property defined for elements of ZΓ
top

(or ZΓ
an) can be translated in the language of open books. This is true

also in the opposite direction, invariants of open books can be studied via
the lattice L. The aim of this section is to emphasise exactly this second
direction applied for some key invariants of open books.

Let us fix M , a plumbing (or, a dual resolution) graph Γ. Let us consider
a Milnor open book associated with an element Z ∈ ZΓ

top, cf. 12(2). In the
sequel we will consider the following numerical invariants of the open book
and also their description in terms of L:

1. The number of binding components bn (Z) is given by −(Z,E).

2. Let Ff be the fiber of the open book. It is an oriented connected
surface with −(Z,E) boundary components. Let g(Z) be its genus
(the so-called page-genus of the open book) and μ(Z) be the first
Betti-number of Ff (the so-called Milnor number). Clearly μ(Z) =
2g(Z)− 1− (Z,E) ≥ 2g(Z).

What is less obvious is the following identity, which connects open books
with the Riemann–Roch formula: for any Z ∈ ZΓ

top one has

g(Z) = 1 + (Z,E) + χ(−Z), and

μ(Z) = 1 + (Z,E) + 2 · χ(−Z) = g(Z) + χ(−Z).
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12.4. ‘Monotone increasing’ invariants

This description allows to prove the next property of these invariants.

Definition 12.4.1. Assume that for any resolution π with graph Γ one has
a map IΓ : ZΓ

top → Z≥0. We say that I = {IΓ}Γ is ‘monotone increasing’ if

for any two cycles Zi ∈ ZΓ
top (i = 1, 2) with Z1 ≤ Z2 one has IΓ(Z1) ≤ IΓ(Z2)

for any Γ.

Remark 12.4.2. Assume that the collection of invariants {IΓ}Γ can be
transformed into (or comes from) an invariant I which associates with any
Milnor open book m of the link an integer. For any fixed analytic type,
let mmax be the Milnor open book associated with Zmax (considered in any
resolution). Similarly, for any topological type, let mmin be the Milnor open
book associated with Zmin (in any resolution of an analytic structure con-
veniently chosen); cf. 12(3). Then, whenever {IΓ}Γ is monotone increasing,
one has automatically the next consequences:

1. Fix an analytic singularity (X, 0) and consider all the Milnor open
books associated with all isolated holomorphic germs f ∈ OX,0. Then
the minimum of integers I(m) of all these Milnor open books m is
realized by the generic hyperplane section, i.e. by I(mmax).

2. Fix a topological type of a normal surface singularity, and consider
the open books associated with all the isolated holomorphic germs of
all the possible analytic structures supported by the fixed topological
type. Then the minimum of all integers I(m) of all these Milnor open
books m is realized by the open book associated with the Artin cycle,
i.e. by I(mmin).

The above definition is motivated by the following result:

Theorem 12.4.3 ([74]). Both invariants Z �→ g(Z) and Z �→ μ(Z) are
monotone increasing.



156 A. Némethi

12.5. Invariants of the canonical contact structure

In [27] Etnyre and Ozbagci consider three invariants associated with fixed
contact structure defined in terms of all open book decomposition support-
ing it:

• the support genus sg (ξ) is the minimal possible genus for a page of an
open book that supports ξ;

• the binding number bn (ξ) is the minimal number of of binding com-
ponents for an open book supporting ξ and that has pages of genus
sg (ξ);

• • the norm n(ξ) of ξ is the negative of the maximal (topological) Euler
characteristic of a page of an open book that supports ξ.

Now, we consider the above invariants restricted on the realm of Milnor
open books (i.e. for all those open books which might appear in the analytic
context). In particular, ξ will be the canonical contact structure ξcan. Let us
denote the corresponding invariants by sgan(ξcan), bnan(ξcan) and nan(ξcan).
Then Theorem 12.4.3 has the following consequence:

sgan(ξcan) = g(Zmin);

bnan(ξcan) = bn (Zmin);

nan(ξcan) = μ(Zmin)− 1.

In particular,

nan(ξcan)− bnan(ξcan) = 2 · sgan(ξcan)− 2.

These facts answer some of the questions of [27], section 8, at least in the
realm of Milnor open books. Since χ(−Z) + χ(Z) + Z2 = 0, one also has

g(Zmin) = 1 + (Zmin, E − Zmin)− χ(Zmin).

Therefore, if (X, 0) is rational (i.e. χ(Zmin) = 1) then g(Zmin) = (Zmin,
E − Zmin) (this can be strict positive, e.g. for the E8-singularity it is 1); if
(X, 0) is elliptic (i.e. χ(Zmin) = 0) then g(Zmin) = 1+(Zmin, E−Zmin) ≥ 1.
In general,

g(Zmin) ≥ 1− χ(Zmin),

hence it can be arbitrarily large.
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Gruppen), Math. Ann., 209 (1974), 211–248.

[94] Schaps, M., Deformations of Cohen-Macauley Schemes of codimension 2 and Non-
Singular Deformations of Space Curves, Am. J. Math., 99 (1977), 669–685.

[95] Schlessinger, M., Functors of Artin Rings, Trans. AMS, 130 (1968), 208–222.

[96] Seade, J. A., A cobordism invariant for surface singularities, Proc. of Symp. in
Pure Math., 40(2) (1983), 479–484.

[97] Smith, I., Torus fibrations on symplectic four-manifolds, Turkish J. Math., 25,
no. 1, (2001), 69–95.



162 A. Némethi

[98] Spivakovsky, M., Sandwiched singularities and desingularization of surfaces by
normalized Nash transformations, Annals of Math., 131 (1990), 411–491.

[99] Steenbrink, J. H. M., Mixed Hodge structures associated with isolated singularities,
Proc. Symp. Pure Math., 40, Part 2 (1983), 513–536.

[100] Stevens, J., Elliptic Surface Singularities and Smoothings of Curves, Math. Ann.,
267 (1984), 239–247.

[101] Stevens, J., On the versal deformation of cyclic quotient singularities, LNM, 1462
(1991), 302–319. (Singularity theory and its applications, Warwick 1989)

[102] Stevens, J., Partial resolutions of rational quadruple points, Int. J. of Math., 2 (2)
(1991), 205–221.

[103] Stevens, J., Deformations of singularities, Springer LNM 1811, 2003.
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The Versal Deformation of Cyclic Quotient

Singularities

JAN STEVENS

We describe the versal deformation of two-dimensional cyclic quotient singulari-
ties in terms of equations, following Arndt, Brohme and Hamm. For the reduced
components the equations are determined by certain systems of dots in a trian-
gle. The equations of the versal deformation itself are governed by a different
combinatorial structure, involving rooted trees.

One of the goals of singularity theory is to understand the versal defor-
mations of singularities. In general the base space itself is a highly singular
and complicated object. Computations for a whole class of singularities are
only possible in the presence of many symmetries. A natural class of sur-
face singularities to consider consists of the affine toric singularities. These
are just the cyclic quotient singularities. Their infinitesimal deformations
were determined by Riemenschneider [8]. Explicit equations for the ver-
sal deformation are the result of a series of PhD-theses. Arndt [1] gave
a recipe to find equations of the base space. This was further studied by
Brohme [3], who proposed explicit formulas. Their correctness was finally
proved by Hamm [6]. One of the objectives of this paper is to describe these
equations.

Unfortunately it is difficult to find the structure of the base space from
the equations. What one can do is to study the situation for low embedding
dimension e. On the basis of such computations Arndt [1] conjectured that
the number of irreducible components should not exceed the Catalan num-
ber Ce−3 =

1
e−2

(
2(e−3)
e−3

)
. This conjecture was proved in [11] using Kollár and

Shepherd-Barron’s description [7] of smoothing components as deformation
spaces of certain partial resolutions. It was observed by Jan Christophersen
that the components are related to special ways of writing the equations of
the singularity. In terms of his continued fractions, representing zero, these
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equations are given in [4, §2], and in terms of subdivisions of polygons in
[11, Sect. 6]. A more direct way of operating with the equations was found
by Riemenschneider [2]. We use it, and the combinatorics behind it, in this
paper to describe the components. A toric description of the components is
given in the second part of Hamm’s thesis [6].

From the toric picture one finds immediately some equations, by looking
at the Newton boundary in the lattice of monomials:

zε−1zε+1 = zaεε , 2 ≤ ε ≤ e− 1.

These form the bottom line of a pyramid of equations zδ−1zε+1 = pδ,ε. In
computing these higher equations choices have to be made. We derive pδ,ε
from pδ,ε−1 and pδ+1,ε. As zδ−1zε+1 = (zδ−1zε)(zδzε+1)/(zδzε), we have two
natural choices for pδ,ε:

pδ,ε−1pδ+1,ε

pδ+1,ε−1
or

pδ,ε−1pδ+1,ε

zδzε
.

We encode the choice by putting a white or black dot at place (δ, ε) in a
triangle of dots. Only for certain systems of choices we can write down
(in an easy way) enough deformations to fill a whole component. We call
the corresponding triangles of dots sparse coloured triangles. We prove
that the number of sparse coloured triangles of given size is the Catalan
number Ce−3.

For the computation of the versal deformation one also starts from the
bottom line of the pyramid of equations. Due to the presence of defor-
mation parameters, divisions which previously were possible, now leave a
remainder. We describe Arndt’s formalism to deal with these remainders.
One introduces new symbols, which in fact can be considered as new vari-
ables on the deformation space. Because they are independent of the aε,
one obtains that the base spaces of different cyclic quotients with the same
embedding dimension are isomorphic up to multiplication by a smooth fac-
tor, provided all aε are large enough. Also here, in writing the equations,
some choices have to made. A particular system of choices was proposed
by Brohme. To be able to handle the terms in the formulas, one needs a
combinatorial description of them. It turns out that the number of terms
grows rapidly, faster than the Catalan numbers, and a different combinato-
rial structure is needed. Hamm [6] discovered how rooted trees can be used.
We will describe the computation of the versal deformation for embedding
dimension 7 and then introduce Hamm’s rooted trees, and give the equa-
tions in general in terms of these trees. We also describe the main steps in
the proof that one really obtains the versal deformation.
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Now that the equations are known, it is time to use them. We make a
start here by showing that one recovers Arndt’s equations for the versal
deformation of the cones over rational normal curves (the case that all
aε = 2). Furthermore, we look at the reduced base space. We start by
looking at an example. We then define an ideal, using sparse coloured
triangles, which has the correct reduced components. We do not touch
upon the embedded components, leaving this for further research.

As one will see, notation becomes rather heavy, with many levels of
indices. Although TEX allows almost anything, we have tried to restrict
the indexing to a minimum. One has to admire Arndt’s thesis [1], written
on a typewriter. At that time, TEX was available, but Jürgen had already
purchased an electronic typewriter for his Diplomarbeit. He decided to write
the indices separately, diminish them with a photocopier and to glue them
in the manuscript.

This paper is organised as follows. After a section introducing cyclic
quotients and their infinitesimal deformations, we treat the case of embed-
ding dimension 5 in detail. In Section 3 we define sparse coloured triangles
and show how to describe the reduced components with them. In Section 4
we give the equations for the total space of the versal deformation: we de-
scribe Arndt’s results, do the case of embedding dimension 6, and formulate
and sketch the proof of the general result in terms of Hamm’s rooted trees.
In the last Section we discuss the reduced base space.

1. Cyclic Quotient Singularities

Let Gn,q be the cyclic subgroup of Gl(2,C), generated by
(

ζn 0
0 ζqn

)
, where

ζn is a primitive n-th root of unity and q is coprime to n. The group acts
on C2 and on the polynomial ring C[u, v]. The quotient C2/Gn,q has a
singularity at the origin, which is called the cyclic quotient singularity Xn,q.
The quotient map is a map of affine toric varieties, given by the inclusion of
the standard lattice Z2 in the lattice N = Z2+Z · 1n(1, q), with as cone σ the
first quadrant. The dual lattice M gives exactly the invariant monomials:
C[M ∩ σ∨] = C[u, v]Gn,q . Generators of this ring are

zε = uiεvjε , ε = 1, . . . , e,
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where the numbers iε, jε are determined by the continued fraction expansion
n/(n− q) = [a2, . . . , ae−1] in the following way:

ie = 0, ie−1 = 1, iε+1 + iε−1 = aεiε

j1 = 0, j2 = 1, jε−1 + jε+1 = aεjε.

We also write X[a] for Xn,q.

We exclude the case of the Ak singularities and assume that the em-
bedding dimension e is at least 4. The equations for X[a] can be given in
quasi-determinantal format [9]:⎛⎝z1 z2 . . . ze−2 ze−1

za2−2
2 . . . z

ae−1−2
e−1

z2 z3 . . . ze−1 ze

⎞⎠
We recall that the generalised minors of a quasi-determinant⎛⎝f1 f2 . . . fk−1 fk

h1,2 . . . hk−1,k

g1 g2 . . . gk−1 gk

⎞⎠
are figj − gi(

∏j−1
ε=i hε,ε+1)fj .

By perturbing the entries in the quasi-determinantal in the most general
way one obtains the equations for the Artin component, the deformations
which admit simultaneous resolution. We describe these deformations more
concretely, following the notation of Brohme [3] (differing slightly from [11]
in that the letters s and t are interchanged). We first remark that in general
the first and the last extra term in a quasi-determinantal can be written in
the matrix: just take g1h1,2 as entry in the lower left corner and fkhk−1,k

as entry in the upper right corner. For a cyclic quotient this gives entries
za2−1
2 and z

ae−1−1
e−1 . We deform

⎛⎜⎝ z1 z2 z3 . . . ze−3 ze−2 Z
(ae−1−1)
e−1

Z
(a3−2)
3 . . . Z

(ae−2−2)
e−2

Z
(a2−1)
2 z3 + t3 z4 + t4 . . . ze−2 + te−2 ze−1 ze

⎞⎟⎠
(1)

where
Z(aε−2)
ε = zaε−2

ε + s(1)ε zaε−3
ε + · · ·+ s(aε−2)

ε
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for 3 ≤ ε ≤ e− 2 and

Z(aε−1)
ε = zaε−1

ε + s(1)ε zaε−2
ε + · · ·+ s(aε−1)

ε

for ε = 2 and ε = e − 1. To obtain all infinitesimal deformations we add
variables s

(aε−1)
ε for 3 ≤ ε ≤ e− 2 and write the perturbation

Z(aε−2)
ε = zaε−2

ε + s(1)ε zaε−3
ε + · · ·+ s(aε−2)

ε + s(aε−1)
ε z−1

ε ,

which gives the coordinates s
(a)
ε , 1 ≤ a ≤ aε − 1, ε = 2, . . . , e − 1 and

tε, ε = 3, . . . , e − 2 on the vector space T 1
X[a]. We note in particular the

polynomial equations

(2) zε−1(zε+1 + tε+1) = (zε + tε)(zaε−1
ε + s(1)ε zaε−2

ε + · · ·+ s(aε−1)
ε ).

To avoid special cases we make this formula valid for all ε by introducing
variables t2, te−1 and te, which we set to zero.

2. Embedding Dimension 5

The two components of the versal deformation of the cone over the rational
normal curve of degree four are related to the two different ways of writing
the equations. The largest, the Artin component, is obtained by deforming
the 2× 4 matrix (

z1 z2 z3 z4
z2 z3 z4 z5

)
.

The equations can also be written as 2× 2 minors of the symmetric 3× 3
matrix ⎛⎝z1 z2 z3

z2 z3 z4
z3 z4 z5

⎞⎠ ,

and perturbing this matrix gives as total space the cone over the Veronese
embedding of P2. Riemenschneider observed that this generalises to all
cyclic quotients of embedding dimension 5 [8]. One can even give the
equations as quasi-determinantals. For the Artin component we take as
described above ⎛⎝ z1 z2 z3 za4−1

4

za3−2
3

za2−1
2 z3 z4 z5

⎞⎠
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and for the other component⎛⎜⎜⎜⎜⎝
z1 z2 za3−1

3

za2−2
2

z2 z3 z4
za4−2
4

za3−1
3 z4 z5

⎞⎟⎟⎟⎟⎠ .

The meaning of the last symbol becomes clear if we write out the equations,
which we have to do in order to generalise, as for higher embedding dimen-
sion only the Artin component has such a nice determinantal description.

We write a pyramid of equations. From the 2 × 4 quasi-determinantal
we get

z1z5 = za2−1
2 za3−2

3 za4−1
4

z1z4 = za2−1
2 za3−1

3 z2z5 = za3−1
3 za4−1

4

z1z3 = za22 z2z4 = za33 z3z5 = za44

and from the symmetric quasi-determinantal

z1z5 = za2−2
2

(
za3−1
3

)2
za4−2
4

z1z4 = z
(a2−1)
2 za3−1

3 z2z5 = za3−1
3 za4−1

4

z1z3 = za22 z2z4 = za33 z3z5 = za44

The difference between these two systems of equations lies in the top line.
Observe that z1z5 − za2−2

2

(
za3−1
3

)2
za4−2
4 = (z1z5 − za2−1

2 za3−2
3 za4−1

4 ) +

za2−2
2 za3−2

3 za4−2
4 (z2z4 − za33 ).

To describe the deformation we introduce the following polynomials:

Z(aε−kε)
ε = zaε−kε

ε + s(1)ε zaε−kε−1
ε + · · ·+ s(aε−kε)

ε .

By deforming the first set of equations we obtain the Artin component:

z1z5 = Z
(a2−1)
2 Z

(a3−2)
3 Z

(a4−1)
4

z1z4 = Z
(a2−1)
2 Z

(a3−2)
3 z3 z2z5 = (z3 + t3)Z

(a3−2)
3 Z

(a4−1)
4

z1(z3 + t3) = z2Z
(a2−1)
2 z2z4 = z3Z

(a3−2)
3 (z3 + t3) z3z5 = z4Z

(a4−1)
4

The second set of equations leads to the other component:

z1z5 = Z
(a2−2)
2 (Z(a3−1)

3 )
2
Z

(a4−2)
4

z1z4 = z2Z
(a2−2)
2 Z

(a3−1)
3 z2z5 = Z

(a3−1)
3 Z

(a4−2)
4 z4

z1z3 = z2Z
(a2−2)
2 z2 z2z4 = z3Z

(a3−1)
3 z3z5 = z4Z

(a4−2)
4 z4
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Together these two components constitute the versal deformation. They fit
together to the deformation

z1z5 = Z
(a2−1)
2 Z

(a3−2)
3 Z

(a4−1)
4 + s

(a3−1)
3 Z

(a2−2)
2 Z

(a3−1)
3 Z

(a4−2)
4(3)

z1z4 = Z
(a2−1)
2 Z

(a3−1)
3 z2z5 = Z̃

(a3−1)
3 Z

(a4−1)
4

z1(z3 + t3) = z2Z
(a2−1)
2 z2z4 = Z

(a3−1)
3 (z3 + t3) z3z5 = z4Z

(a4−1)
4

over the base space defined by the equations

s
(a2−1)
2 s

(a3−1)
3 = t3s

(a3−1)
3 = s

(a3−1)
3 s

(a4−1)
4 = 0.

Here the factor Z̃
(a3−1)
3 is defined by the equation z3Z̃

(a3−1)
3 = (z3 + t3)

Z
(a3−1)
3 , which is possible because of the equation t3s

(a3−2)
3 = 0.

Remark. The equations for the versal deformation restrict (by setting the
deformation variables to zero) to the equations of the singularity in the
preferred form for the Artin component. A choice has to be made, and
this one is sensible as the Artin component is the only component, which
exists for all cyclic quotients. Observe also that the right hand side of the
top equation in (3) is no longer a product. For the study of the non-Artin
component, e.g., to determine adjacencies, the adapted equations are much
better suited. We have therefore in general two tasks, to describe equations
suited for each reduced component separately, and to give equations for the
total versal deformation.

3. Equations for Components

The reduced components of the versal deformation are related to ways of
writing the equations of the singularity, as shown in [4] and [11]. Here we
give a description which first appeared in [2].

We have to write the equations zδ−1zε+1 = pδ,ε. Motivated by the case
of embedding dimension 5 we want the right hand side of the equations to

be of the form pδ,ε =
∏

β

(
z
aβ−kβ
β

)αβ . Here the kβ and αβ depend on ε− δ,
but the formula should be in some sense universal, it should hold for all aβ
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large enough (for aβ − kβ has to be non-negative). The toric weight vectors
wβ ∈ Z2 of the variables zβ should therefore satisfy the equations

wδ + wε =
∑

αβ(aβ − kβ)wβ ,

the same equations as encountered by Jan Christophersen (see the Intro-
duction of [4]).

We construct a pyramid of equations zδ−1zε+1 = pδ,ε, where 2 ≤ δ ≤
ε ≤ e − 1. We start from the base line containing the zε−1zε+1 = zaεε , and
construct the next lines inductively. We have to make choices, which we
encode in a subset B(�) of the set of pairs (δ, ε) with 1 < δ < ε < e. As
zδ−1zε+1 = (zδ−1zε)(zδzε+1)/(zδzε), we have two natural choices for pδ,ε: we
take

pδ,ε =

⎧⎪⎨⎪⎩
pδ,ε−1pδ+1,ε

pδ+1,ε−1
, if (δ, ε) /∈ B(�),

pδ,ε−1pδ+1,ε

zδzε
, if (δ, ε) ∈ B(�).

We depict our set by a triangle � of the type

� � � �

� � �

� �

�

This is an example for embedding dimension e = 7. The dots correspond to
equations zδ−1zε+1 = pδ,ε above the base line in the pyramid of equations.
In particular, the top dot in the example corresponds to z1z7 = p2,6, and has
coordinates (2, 6). We colour a dot in � black if the corresponding point
(δ, ε) is an element of B(�).

As the second line of equations always reads pε−1,ε = z
aε−1−1
ε−1 zaε−1

ε ,
2 < ε ≤ e− 1, the lowest line of the triangle is coloured black. To char-
acterise the coloured triangles, which give good equations, it suffices to
consider only triangles �, obtained by deleting this black line:

� � �

� �

�

The original triangle will be referred to as extended triangle. We introduce
some more terminology. A (broken) line lε, in both the triangle � and the
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extended triangle �, is a line connecting all dots which have ε as one of the
coordinates:

� � � �

�
�

�
�

�
�

��

�� �
�

�
�

�
�

�
�

�

�
�

�
��

�
�

�
��

�
�

�

�
�

�
�

�
�

���
�

�
�

�
�

��

� � �

� �

�
l6

l5
l4

l3
l2

�
�

�
�

�
�

��

�� �
�

�
�

�
�

�
�

�

�
�

�
��

�
�

�
��

�
�

�

�
�

�
�

�
�

���
�

�
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If necessary we specify a triangle by the coordinates of its highest vertex
(δ, ε), as �δ,ε. The height of a triangle �δ,ε is ε− δ− 1. This is the number
of horizontal lines and also the number of dots on the base line. A dot (α, β)
in a triangle�δ,ε determines a sub-triangle�α,β , standing on the same base
line, of height β−α−1. In particular, a single dot (ε−1, ε+1) on the base
line gives a triangle �ε−1,ε+1 of height 1.

The crucial property for getting good equations is given in the following
definition.

Definition 3.1. A coloured triangle �δ,ε is sparse, if for it and for every
sub-triangle �α,β the number of black dots is at most the height of the
triangle with equality if and only if its vertex is black.

Note that the example triangle above is sparse, whereas the following
triangle is not sparse.

� � �

� �

�

The relation (α, γ) � (β, δ), if α ≥ β and γ ≤ δ is a partial ordering. It
means that (α, γ) lies (as black or white dot) in the triangle �β,δ.

Lemma 3.2. If two black dots lie in the region on or above a given line lε,
then both of them lie on lε or they are comparable in the partial ordering �.

Proof. Suppose on the contrary that the black dots (α, γ) and (β, δ) on or
above lε are not comparable in the partial ordering and that at least one
of them lies strictly above lε. We may assume that γ ≤ δ. This implies
that α < β. The assumption that (α, γ) lies on or above lε means that
α ≤ ε ≤ γ and likewise β ≤ ε ≤ δ. Furthermore in one of these one has
strict inequalities. Therefore β < γ. The triangle �α,γ contains exactly
γ − α− 1 black dots, the triangle �β,δ contains exactly δ−β−1 black dots
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and their intersection is the triangle �β,γ , which contains at most γ − β − 1
dots. So the triangle �α,δ, which has as vertex the supremum (α, δ) of
(α, γ) and (β, δ) in the partial ordering, contains at least (γ − α− 1) +
(δ − β − 1) − (γ − β − 1) = δ − α− 1 black dots other than its vertex,
contradicting sparsity.

Theorem 3.3. The number of sparse coloured triangles of height e− 4 is
the Catalan number Ce−3 =

1
e−2

(
2(e−3)
e−3

)
.

Proof. Consider a sparse triangle �2,e−1 and let (2, β) be the highest black
dot on the line l2. There are no black dots above the line lβ , for according to
Lemma 3.2 the dot (2, β) should lie in the triangle of such a dot, implying
that it lies on l2, but (2, β) is the highest black dot on that line. The
triangle �β,e−1 can be an arbitrary sparse triangle. The sparse triangle
�3,β determines the colour of the remaining dots on the line l2: proceeding
inductively downwards, the dot (2, γ) has to be black if and only if there
are exactly γ−β black dots in the triangle �2,β , not lying in �2,γ ; as (2, β)
is black, there are at least γ − β black dots in this complement.

This shows that the number Cn, n = e− 3, of sparse coloured triangles
of height n− 1 satisfies Segner’s recursion formula for the Catalan numbers

Cn+1 = C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0.

For more information on the Catalan numbers, see [10].

Remark. The Catalan number Ce−3 also counts the number of subdivisions
of an (e − 1)-gon in triangles. An explicit bijection is as follows. Mark, as
in [11], a distinguished vertex and number the remaining ones from 2 to
e− 1. If the vertices δ and ε are joined by a diagonal, then we colour the
dot (δ, ε) black. Conversely, given a triangle �2,e−1 we join the vertices δ
and ε by a diagonal, if the dot (δ, ε) is black. By Lemma 3.2 these diagonals
do not intersect. We complete the subdivision with diagonals through the
distinguished vertex. Sometimes it is easier to use subdivisions, but we will
derive all facts we need directly from the combinatorics of sparse triangles.

To describe the equations we need the numbers [k2, . . . , ke−1] and (α2,
. . . , αe−1). These are indeed the continued fractions [k2, . . . , ke−1] represent-
ing zero [4] and the corresponding numbers satisfying αε−1 + αε+1 = kεαε.
To define these numbers out of a triangle we inductively give non-zero
weights to black dots; white dots have weight zero.



The Versal Deformation of Cyclic Quotient Singularities 173

Definition 3.4. Let �2,e−1 be a sparse triangle. The weight wδ,ε of a black
dot (δ, ε) is the sum of the weights of the dots lying in the sector above it,
increased by one: wδ,ε = 1 +

∑
α<δ
β>ε

wα,β . For 2 ≤ ε ≤ e− 1 we define αε as

the sum of the weights of dots above the line lε, increased by one:

αε = 1 +
∑
α<ε
β>ε

wα,β .

In particular, αε = 1 if there are no black points above the line lε, so
α2 = αe−1 = 1.

We set kε to be the number of black dots on the line lε in the extended
triangle if αε = 1 and this number minus 1 otherwise.

Example.
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1

1

k6 = 3

k5 = 1

k4 = 3

k3 = 1

k2 = 3

α6 = 1α5 = 3α4 = 2α3 = 3α2 = 1

Remarks. 1. We leave it as exercise to prove that the so defined numbers
αε and kε satisfy αε−1 + αε+1 = kεαε.

2. We note the following alternative way to compute the αε [3, Be-
merkung 1.7]. As mentioned, αε = 1 if there are no black dots above the
line lε. For every other index ε there exist unique β < ε < γ, such that the
intersection of the lines lβ , lε and lγ (in the extended triangle) consists only
of black dots. Then αε = αβ + αγ . In fact, this is the way the numbers are
determined from a subdivision of a polygon. We sketch a proof. Let (β, ε)
be the highest black dot on the left half-line of lε, and (ε, γ) the highest
black dot on the right half-line. Let (α, δ) be a black dot above the line lε,
such that �α,δ contains no other black dots above lε. Then (β, γ) � (α, δ),
and if (β, γ) 
= (α, δ), then �α,δ does not contain enough dots. So if αε 
= 1,
then (β, γ) is black. Black dots above the lines lβ , lε and lγ can only lie in
the sector with (β, γ) as lowest point. One now computes αε = αβ + αγ .
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We can now describe the equations belonging to a sparse triangle�2,e−1.
To avoid cumbersome notation we only give the formula for the highest
equation z1ze = p2,e−1, but this implies by obvious changes the formula for
each equation zδ−1zε+1 = pδ,ε, as such an equation is determined by its own
sparse triangle �δ,ε, giving its own α and k values. We will specify in the
text from which triangle a specific αε or kε is computed, but we do not
include this information in the notation.

Proposition 3.5. Let the triangle�2,e−1 determine the numbers αε, kε, ac-
cording to Definition 3.4. Forming the equations by taking pδ,ε =

pδ,ε−1pδ+1,ε

zδzε

if the dot (δ, ε) is black and pδ,ε =
pδ,ε−1pδ+1,ε

pδ+1,ε−1
otherwise, leads to the highest

equation

z1ze =

e−1∏
β=2

(
z
aβ−kβ
β

)αβ .

Proof. We fix an index ε and look at the zε-factor in p2,e−1. The proof
proceeds by induction on e, i.e., on the height of the triangle. The base of
the induction is formed by the equations zε−1zε+1 = zaεε , which correspond
to empty extended triangles, with αε = 1 and kε = 0.

Suppose that the formula is proved for all pδ,ε with ε− δ < e− 3. There
are two cases, depending on the colour of the dot (2, e− 1).

Case 1: the dot (2, e − 1) is white. Then we have to compare p2,e−1,
p2,e−2, p3,e−1 and p3,e−2 and the values of αε and kε computed from the
corresponding triangles. There are several sub-cases. In the first two we
assume that ε 
= 2, e− 1.

1.a: Suppose both (2, ε) and (ε, e− 1) are black. A black dot above the
line lε should contain both these points in its triangle, so it can only be
(2, e− 1), which however is assumed to be uncoloured. Therefore αε = 1 in
all the relevant triangles. We have that there are kε dots on the line lε in the
extended triangle �

2,e−1
, kε−1 in �

2,e−2
and �

3,e−1
, and kε−2 in �

3,e−2
.

So indeed the zε factor in p2,e−1 is equal to zaε−kε+1
ε · zaε−kε+1

ε /zaε−kε+2
ε =

zaε−kε
ε .

1.b: Otherwise the segments (2, ε)− (2, e− 1) and (ε, e− 1)− (2, e− 1)
cannot both contain black dots. Suppose the first segment, on l2, is empty
(in particular (2, ε) is white). Then the number of black dots on the
line lε is equal in both �

2,e−1
and �

3,e−1
, being equal to kε or kε + 1

depending on the value of αε, and one computes also the same value for
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αε. Also �
2,e−2

and �
3,e−2

yield the same values α′
ε and k′ε, so we get(

zaε−kε
ε

)αε ·
(
z
aε−k′ε
ε

)α′
ε/
(
z
aε−k′ε
ε

)α′
ε =
(
zaε−kε
ε

)αε .

1.c: Suppose that ε = 2 or ε = e − 1. Consider the first case. The
monomial z2 does not occur in p3,e−1 and p3,e−2. Always α2 = 1 and the
number of dots on l2 is the same in both relevant triangles.

Case 2: the dot (2, e− 1) is black. We have to compare the values of αε

and kε in p2,e−1, p2,e−2 and p3,e−1. Again we consider ε = 2, e− 1 separately.

2.a: Suppose both (2, ε) and (ε, e − 1) are black. Then (2, e − 1) is the
only black dot above the line lε, which makes αε = 2, whereas αε = 1 in
both smaller triangles. The number of black dots on the line lε is ke + 1 in
�

2,e−1
, and ke in �

2,e−2
and �

3,e−1
. So the zε factor in p2,e−1 is equal to

zaε−kε
ε · zaε−kε

ε =
(
zaε−kε
ε

)2
.

2.b: Suppose (2, ε) is black and (ε, e − 1) not. Then all black points
above lε lie on l2, all having weight 1, and there is at least one of them
between (2, ε) and (2, e − 1), as (ε, e − 1) is not black. There are kε + 1
points on lε in �

2,e−1
and �

2,e−2
, and kε in �

3,e−1
. The last triangle gives

the value αε = 1 in p3,e−1, whereas αε > 1 in the first two, and the value
from �

2,e−1
is one more than that from �

2,e−2
. So the zε factor in p2,e−1

is equal to
(
zaε−kε
ε

)αε−1 · zaε−kε
ε =

(
zaε−kε
ε

)αε .

2.c: Suppose both (2, ε) and (ε, e − 1) are white. The number of dots
on lε is the same in all three relevant triangles. In the largest one αε > 1,
so to get the same value for kε we need that αε > 1 also in both other
triangles. This means that the triangle �3,e−2 has to have a dot above
the line lε. Of the segments of l2 and le−1 above lε only one can contain
black dots besides the vertex. Suppose (j, e − 1) is the lowest dot of the
segment on le−1. The number of dots in �j,e−1 on or under lε is at most
(e − 1 − ε − 2) + (ε − j − 1) = (e − 1 − j − 3). As the triangle contains
exactly e − 1 − j − 2 dots other than the vertex, there has to be a dot
above lε, which does not lie on le−1 due to the choice of (j, e − 1). To
compute αε we have to look at the weights. With the convention that
points above a triangle have weight 0, the inductive formula holds for
points in a sub-triangle with summation over all points in the sector of
the big triangle. We show by induction that for all points except the
vertex (2, e − 1) the weight wi,j computed from the big triangle, equals
the sum of the weights w′

i,j from �2,e−2 and w′′
i,j from �3,e−1. Indeed,

wi,j = 1 +
∑

wk,l = 1 + 1 +
∑

(k,l)�=(2,e−1)wk,l = 1 +
∑

w′
k,l + 1 +

∑
w′′
k,l =
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w′
i,j +w′′

i,j . The same computation shows that also the values of αε add. So
indeed the zε factor in p2,e−1 is the product of those in p2,e−2 and p3,e−1.

2.d: If ε = 2, then α2 = 1 and the number of points on l2 in �2,e−1
is k2,

whereas it is k2−1 in�2,e−2
. The z2 factor in p2,e−1 is z

a2−k2+1
2 /z2 = za2−k2

2 .

The case ε = e− 1 is similar.

As in the case of embedding dimension 5 we can now deform. We perturb
each term zaε−kε

ε to

Z(aε−kε)
ε = zaε−kε

ε + s̃(1)ε zaε−kε−1
ε + · · ·+ s̃(aε−kε)

ε .

Here we write s̃
(j)
ε , as these variables are not quite the same as the coordi-

nates s
(j)
ε on T 1, specified by the equations (2). The relation is the following:

if αε > 1, we set tε = 0, and s̃
(j)
ε = s

(j)
ε , but if αε = 1 one has

(zε + tε)
αε−1(zaε−kε

ε + s̃(1)ε zaε−kε−1
ε + · · ·+ s̃(aε−kε)

ε )zαε+1
ε

= (zε + tε)(zaε−1
ε + s(1)ε zaε−2

ε + · · ·+ s(aε−1)
ε ).

This formula makes sense, as αεkε = αε−1 + αε+1, so for αε = 1 one has
kε = αε−1 + αε+1.

Proposition 3.6. Let �2,e−1 be a sparse triangle. Put tε = 0, if αε > 1.
Now form the equations zδ−1(zε+1 + tε+1) = Pδ,ε, starting from

Pε,ε = (zε + tε)
αε−1(zaε−kε

ε + s̃(1)ε zaε−kε−1
ε + · · ·+ s̃(aε−kε)

ε )zαε+1
ε ,

if αε = 1 and

Pε,ε = (zaε−kε
ε + s(1)ε zaε−kε−1

ε + · · ·+ s(aε−kε)
ε )zkεε

otherwise. Take Pδ,ε =
Pδ,ε−1Pδ+1,ε

zδ(zε+tε)
if the dot (δ, ε) is black and Pδ,ε =

Pδ,ε−1Pδ+1,ε

Pδ+1,ε−1
otherwise. This gives the highest equation

z1ze =

e−1∏
β=2

(Z
(aβ−kβ)
β )

αβ .

These equations define a flat deformation of the cyclic quotient singular-
ity X[a].
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The flatness is proved explicitly in [4, 2.1.2] and [3, 2.2]. It is of course
a consequence of the inductive definition of the polynomials Pδ,ε.

In fact, one gets in this way exactly all reduced components of the versal
deformation. This was proved in [11] using Kollár and Shepherd-Barron’s
description [7] of smoothing components as deformation spaces of certain
partial resolutions. A more elementary (but not easier) approach would be
to use the equations for the base space of the versal deformation, which we
describe in the next section.

4. Versal Deformation

In this section we derive the equations for the versal deformation. We have
to write the pyramid of equations, as in the example of embedding dimension
five. The base line consist of the equations (2). These equations are lacking
in symmetry: when introducing the deformation variables tε, say in the
quasi-determinantal, there is a choice of writing them in the upper or the
lower row. Arndt [1] formally symmetrises by setting yε = zε + tε. We go
one step further and replace tε by two deformation variables. This makes
that our deformation is versal, but no longer miniversal. Furthermore, there
is no t2 and te−1, but in order to avoid special cases, we allow the index ε
in tε to take the values 2 and e− 1.

We start from the equations zε−1zε+1 = zaεε , which we deform into

(4) (zε−1 − lε−1)(zε+1 − rε+1) = zaεε + σ(1)
ε zaε−1

ε + · · ·+ σ(aε)
ε .

We abbreviate zε− rε = Rε and zε − lε = Lε. The minus sign is introduced
to simplify the conditions for divisibility by Rε or Lε, which will be the
main ingredient in our description of the base space. We write the equation
(4) shortly as

Lε−1Rε+1 = Z(00)
ε .

As written, we do not even get an infinitesimal deformation: one needs

σ
(aε)
ε ≡ 0 modulo the square of the maximal ideal of the parameter space.

Comparison with equation (2) shows that Z
(00)
ε (zε) (we use this notation to

emphasise that we consider Z
(00)
ε as polynomial in zε) has to be divisible

by Rε, i.e, Z
(00)
ε (rε) = 0. This gives an equation with non-vanishing linear

part. We could as well require divisibility by Lε. This gives an equation

Z
(00)
ε (lε) = 0 with the same linear part.
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In fact, we shall assume both conditions, Z
(00)
ε (rε) = 0 and Z

(00)
ε (lε) = 0.

This yields then one equation with non-vanishing linear part, and one

equation, not involving σ
(aε)
ε at all, which factorises:

Z(00)
ε (lε)− Z(00)

ε (rε) = (lε − rε)σ
(11)
ε = 0.

This formula defines σ
(11)
ε , which should not be confused with one of the

variables in equation (4). Those variables do not play a prominent role
in the computations to come. They are important for the momodromy
covering of the versal deformation, as noted by Riemenschneider and studied
by Brohme [3]. There is a large covering, which induces the monodromy

covering of each reduced component, obtained by considering the σ
(i)
ε as

elementary symmetric functions in new variables. For details we refer to [3].

We have to give the other equations. They will have the form

Lδ−1Rε+1 = Pδ,ε.

The polynomials Pδ,ε will be well defined modulo the ideal J , generated by
the equations of the base space. To describe them we perform division with
remainder.

Definition 4.1. We inductively define polynomials Z
(ij)
ε in the variable zε,

starting from Z
(00)
ε = zaεε + σ

(1)
ε zaε−1

ε + · · ·+ σ
(aε)
ε , by division by Lε

(5) Z(ij)
ε = LεZ

(i+1,j)
ε + σ(i+1,j)

ε ,

and by Rε

(6) Z(ij)
ε = Z(i,j+1)

ε Rε + σ(i,j+1)
ε .

Note that σ
(i+1,j)
ε = Z

(ij)
ε (lε), and σ

(i,j+1)
ε = Z

(ij)
ε (rε). From the equa-

tions (5) or (6) we obtain by substituting that

(7) σ(i+1,j)
ε − σ(i,j+1)

ε = (lε − rε)σ
(i+1,j+1)
ε .

The condition Z
(00)
ε (lε) = Z

(00)
ε (rε) = 0 translates into σ

(10)
ε = σ

(01)
ε = 0

and we can write
Z(00)
ε = LεZ

(10)
ε = Z(01)

ε Rε.

The next line in the pyramid of equations can now be computed:

Lε−2Rε+1 =
(Lε−2Rε−1)(Lε−1Rε+1)

Lε−1Rε
=

Z
(00)
ε−1Z

(00)
ε

Lε−1Rε
= Z

(10)
ε−1Z

(01)
ε .
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For the higher lines we do not quite proceed as before, when describing
the components. Computing with Lδ−1Rε+1 = (Lδ−1Rε)(LδRε+1)/(LδRε)
would be too complicated. Instead we take the asymmetric approach

Lδ−1Rε+1 = (Lδ−1Rε)(Lε−1Rε+1)/(Lε−1Rε) = Pδ,ε−1Z
(01)
ε /Lε−1.

We do the next step:

Lε−3Rε+1 =
Pε−2,ε−1Z

(01)
ε

Lε−1
=

Z
(10)
ε Z

(01)
ε−1Z

(01)
ε

Lε−1
,

where we now have to use the division with remainder Z
(01)
ε−1 = Lε−1Z

(11)
ε−1 +

σ
(11)
ε−1 of equation (5) to get

Lε−3Rε+1 = Z
(10)
ε−2Z

(11)
ε−1Z

(01)
ε +

Z
(10)
ε−2σ

(11)
ε−1Z

(01)
ε

Lε−1
.

This is not the final formula, as we can pull out a factor Lε−2 from Z
(10)
ε−2

and Rε from Z
(01)
ε by division with remainder. Doing this successively and

then using Lε−2Rε = Lε−1Z
(10)
ε−1 gives us

Lε−3Rε+1 = Z
(10)
ε−2Z

(11)
ε−1Z

(01)
ε +

Lε−2Z
(20)
ε−2σ

(11)
ε−1Z

(01)
ε

Lε−1
(8)

+
σ
(20)
ε−2σ

(11)
ε−1Z

(01)
ε1

Lε−1

= Z
(10)
ε−2Z

(11)
ε−1Z

(01)
ε +

Lε−2Z
(20)
ε−1σ

(11)
ε−1Z

(02)
ε Rε

Lε−1

+
σ
(20)
ε−2σ

(11)
ε−1Z

(01)
ε

Lε−1
+

Lε−2Z
(20)
ε−2σ

(11)
ε−1σ

(02)
ε

Lε−1

= Z
(10)
ε−2Z

(11)
ε−1Z

(01)
ε + Z

(20)
ε−2σ

(11)
ε−1Z

(10)
ε−1Z

(02)
ε

+
σ
(20)
ε−2σ

(11)
ε−1Z

(01)
ε

Lε−1
+

Lε−2Z
(20)
ε−2σ

(11)
ε−1σ

(02)
ε

Lε−1
.

Further steps are not possible. For the formula to be polynomial we need
that the last two summands vanish. We obtain the equations

(9) λε−2,ε−1 := σ
(20)
ε−2σ

(11)
ε−1 = 0, ρε−1,ε := σ

(11)
ε−1σ

(02)
ε = 0

in the deformation variables.
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Example (embedding dimension 5). The computations up to now suffice.
We get, modulo the ideal of the base space, the same equations as equa-
tions (3) in Section 2. To translate in the notation used there, note that
there are no variables t2 and t4, so we set l2 = r2 = l4 = r4 = 0, and

we take l3 = 0, r3 = −t3. One gets Z
(k0)
2 = Z

(a2−k)
2 and Z

(0k)
4 = Z

(a4−k)
4 ,

σ
(20)
2 = s

(a2−1)
2 and σ

(02)
4 = s

(a4−1)
4 . For ε = 3 we find

Z
(00)
3 = Z

(01)
3 R3 = Z

(a3−1)
3 (z3 + t3) = L3Z

(10)
3 = z3Z̃

(a3−1)
3

and
Z

(01)
3 = L3Z

(11)
3 + σ

(11)
3 = z3Z

(a3−2)
3 + s

(a3−1)
3 .

The formula (8) gives Z̃
(a3−1)
3 as factor in the second summand of the right-

hand side of the equation z1z5 = P2,4, but the difference with Z
(a3−1)
3 , as

given in the equations (3), lies in the ideal of the base space. Note that in
general

Z(i+1,j)
ε − Z(i,j+1)

ε

= (Z(i+1,j+1)
ε Rε + σ(i+1,j+1)

ε )− (LεZ
(i+1,j+1)
ε + σ(i+1,j+1)

ε )

= (lε − rε)Z
(i+1,j+1)
ε .

The factor σ
(11)
3 in the second summand gives that we can use the equation

(l3 − r3)σ
(11)
3 = t3s

(a3−1)
3 = 0.

We obtained the equations (9) as necessary condition to find a polyno-
mial Pε−1,ε+1. We observe that they could be computed before computing
Pε−1,ε+1, as they are the result of suitable substitutions in the right hand

side of the equations of the previous line: λε−1,ε = σ
(20)
ε−1σ

(11)
ε is gotten by

setting zε−1 = lε−1 and zε = lε in Pε−1,ε = Z
(10)
ε−1Z

(01)
ε , while Pε,ε+1 gives

ρε,ε+1 by zε = rε and zε+1 = rε+1.

To find the versal deformation in general one has to proceed in the same
way for the higher lines of the pyramid. Arndt has shown that this works.
As the proof is only written in his thesis [1], we sketch it here.

Theorem 4.2. Let zδ−1zε+1 = pδ,ε, 2 ≤ δ ≤ ε ≤ e − 1, be the quasi-
determinantal equations for a cyclic quotient singularity X of embedding
dimension e. There exists a deformation Lδ−1Rε+1 = Pδ,ε of these equations
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over a base space, whose ideal J has dimT 2
X = (e − 2)(e − 4) generators,

being (lε − rε)σ
(11)
e for 3 ≤ ε ≤ e − 2, λδ,ε for 2 ≤ δ < ε ≤ e − 2, and ρδ,ε

for 3 ≤ δ < ε ≤ e− 1. The polynomials Pδ,ε can be determined inductively,
followed by λδ,ε = Pδ,ε|zβ=lβ

and ρδ,ε = Pδ,ε|zβ=rβ
, where δ ≤ β ≤ ε. This

deformation is versal.

Sketch of proof. To find Pδ,ε we have to express the product Lδ−1Rε+1 in
the local ring in terms of variables with indices between δ and ε. We assume
that we already have the equations Lβ−1Rγ+1 = Pβ,γ for γ − β < ε− δ, and
also the base equations formed from them. Let Iδ,ε be the ideal of all these
equation. Obviously Pδ,ε has to satisfy

(10) LβRγPδ,ε ≡ Pβ+1,εPδ,γ−1 mod Iδ,ε

for all β, γ, and it can be determined from any of these equations. The
other ones then follow. For the actual computation (following [3]) we use
β = ε− 1 and γ = ε, but now we take β = δ, γ = ε, so the right hand side of
equation (10) becomes Pδ,ε−1Pδ+1,ε. We perform successively division with
remainder by Lβ and find

Pδ,ε−1 =

ε−1∑
β=δ

P
(β)
δ,ε−1Lβ ,

without remainder because of the equation λδ,ε−1. Now we use the congru-
ences

LβPδ+1,ε ≡ LδPβ+1,ε,

whose validity one sees upon multiplying with Rε+1. We conclude that

Pδ,ε−1Pδ+1,ε ≡ Lδ

(∑
P

(β)
δ,ε−1Pβ+1,ε

)
.

Likewise, from

(11) Pδ+1,ε =
∑

Q
(β)
δ+1,εRβ ,

we get, using ρδ+1,ε, that

Pδ,ε−1Pδ+1,ε ≡ Rε

(∑
Q

(β)
δ+1,εPδ,β−1

)
.

Arndt proves that, if a polynomial is divisible by Lδ and by Rε, then it is
divisible by the product LδRε. To check the statement it suffices to do it for
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the special fibre (according to [1, 1.2.2]). One notes that the ideal Iδ,ε defines
a flat deformation of the product of a certain cyclic quotient singularity in
the variables zδ, . . . , zε with a smooth factor of the remaining coordinates, so
zδ = un

′
, zε = vn

′
for a certain n′. Here indeed it holds, that if a polynomial

is divisible by un
′
and by vn

′
, then it is divisible by the product (uv)n

′
.

Therefore there exists a polynomial Pδ,ε with LδRεPδ,ε = Pδ,ε−1Pδ+1,ε.

We do not know very much about Pδ,ε. We know that over the Artin

component Z
(01)
ε−1 is divisible by Lε−1, so we can define inductively Pδ,ε|AC =

Pδ,ε−1|ACZ
(01)
ε /Lε−1. Restricted to the Artin component, the difference

between the so defined Pδ,ε|AC and Pδ,ε from above lies in the restriction of
the ideal Iδ,ε. By induction the elements of this ideal extend in the correct
way, so we can use them to change Pδ,ε, so that its restriction is equal to
Pδ,ε|AC.

To show flatness we lift the relations. On the Artin component we have
the quasi-determinantal relations, which come in two types, depending on
the use of the bottom or top line of the quasi-matrix. We give the lift for
one type, the other being similar. On the Artin component one has the
relation

Lγ−1(Lδ−1Rε+1 − Pδ,ε) = Lδ−1(Lγ−1Rε+1 − Pγ,ε) +
Pγ,ε

Rγ
(Lδ−1Rγ − Pδ,γ−1),

so using an expansion like (11) for Pγ,ε we find modulo the ideal Iδ,ε the
relation

Lγ−1(Lδ−1Rε+1−Pδ,ε) ≡ Lδ−1(Lγ−1Rε+1−Pγ,ε)+
∑

Q(β)
γ,ε(Lδ−1Rβ−Pδ,β−1).

For versality one needs firstly the surjectivity of the map of the Zariski
tangent space of our deformation to T 1

X , and secondly the injectivity of the
obstruction map Ob : (J/mJ)∗ → T 2

X , where J is the ideal of the base space.
That we cover all possible infinitesimal deformations, is something we have
already said and used; for a proof (which requires an explicit description
of T 1

X), see [8], [1] or [11]. We neither give here an explicit description
of T 2

X (see [1]). For the map Ob one starts with a map l : J/mJ → OX

and exhibits the following function on relations: consider a relation r, i.e.,∑
firj = 0, which lifts to

∑
FiRi =

∑
gjqj , where the gj are the generators

of the ideal J . Then Ob (l)(r) =
∑

l(gj)qj ∈ OX . From our description of
the relations we see that the equation ρδ+1,ε occurs for the first time when
lifting the relation

Lδ(Lδ−1Rε+1 − Pδ,ε) = Lδ−1(LδRε+1 − Pδ+1,ε) +
Pδ+1,ε

Rδ+1
(Lδ−1Rδ+1 − Pδ,δ).
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This more or less shows that one really needs all equations for the base
space.

Note that this result indeed determines the ideal of the base space,
but does not give explicit formulas for specific generators. Looking at
the equations, say for the total space, one might recognise the numbers
[1, 2, 1] and [2, 1, 2], suggesting that an explicit formula can be somehow
given in terms of Catalan combinatorics. To show that the situation is
more complicated, we will derive the equations of the next line.

We compute the polynomial Pε−3,ε. It will be more complicated than
formula (8), so better notation is desirable to increase readability. Following
Brohme [3] we use a position system. In stead of the complicated symbols

Z
(ij)
ε−γ and σ

(ij)
ε−γ we write only the upper index ij; the lower index is not

needed, if we write factors with the same ε − γ below each other. To

distinguish between Z
(ij)
ε−γ and σ

(ij)
ε−γ we write the ij representing Z

(ij)
ε−γ in

bold face.

Example. The symbol

30 20 10 03
20 11
11 12

represents the monomial Z
(30)
ε−3σ

(11)
ε−2σ

(20)
ε−2Z

(20)
ε−2σ

(12)
ε−1σ

(11)
ε−1Z

(10)
ε−1Z

(03)
ε .

A factor Lε−γ in the denominator will be represented by L, whereas
an extra factor Lε−γ in the numerator will be written in bold face. We

start from Pε−3,ε−1Z
(01)
ε /Lε−1, being the sum of two terms. These will be

transformed using the division with remainder (5) and (6) and previous
equations. One gets some terms, which occur in the final answer, and some
terms, which will be transformed again. Terms that will be transformed, are
written in italics, and should be considered erased, when transformed. So

Pε−3,ε−1Z
(01)
ε /Lε−1 is, modulo previous equations, equal to the sum of the

not italicised terms up to a line in italics, plus the terms in that line (dis-
regarding all text in between). The final result consists of a polynomial of
8 terms, (P.1)–(P.8), and two types of terms with Lε−1 in the denominator,
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called (L.1)–(L.4) and (R.1)–(R.4). Now we start:

(I.1)
10 11 01 01

L
+ (I.2)

20 10 02 01
11 L

(P.1) 10 11 11 01 + (P.2)
20 10 12 01

11

(I.3)

10 11 01
11

L
+ (I.4)

20 10 01
11 12

L

Now take out factors Lε−2 and Rε, giving Lε−1Z
(10)
ε−1 and two remainders:

(P.3)
10 21 10 02

11
+ (P.4)

20 20 10 02
11 12

(I.5)

10 01
21 11

L
+ (I.6)

20 01
20 12

11 L

(R.1)

L
10 21

11 02

L

+ (R.2)

L
20 20

11 12 02

L

Taking out Lε−3 and Rε from (I.5) and (I.6) gives Z
(10)
ε−2Z

(01)
ε−1 and two

remainders:

(I.7)

20 10 01 02
21 11

L
+ (I.8)

30 10 01 02
20 12

11 L

(L.1)

01
20 21 11

L
+ (L.2)

01
30 20 12

11 L

(R.3)

L
20

21 11 02

L

+ (R.4)

L
30

20 12 02

11 L
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Now we follow the steps of the computation of Pε−2,ε.

(P.5)
20 10 11 02

21 11
+ (P.6)

30 10 11 02
20 12
11

(I.9)

20 10 02
21 11

11

L

+ (I.10)

30 10 02
20 11
11 12

L

(P.7)
20 20 10 03

21 11
11

+ (P.8)
30 20 10 03

20 11
11 12

(L.3)

20 02
20 11
21 11

L

+ (L.4)

30 01
20 11
20 12

11 L

(R.5)

L
20 20

21 11 03
11

L

+ (R.6)

L
30 20

20 11 03
11 12

L

Remarks. 1. It is easy to see that the terms (L.i) vanish modulo the ideal J :
the terms (L.1) and (L.2) vanish because of the equation λε−3,ε−1, and the
terms (L.3) and (L.4) both vanish by equation λε−2,ε−1.

The terms (R.i) are more difficult. Taken together, (R.2) and (R.5)
vanish by equation ρε−2,ε. The term (R.1) vanishes by ρε−1,ε, as does less
evidently (R.3). For (R.6) one uses λε−2,ε−1. The term (R.4) is the most

complicated. We multiply ρε−2,ε with σ
(20)
ε−2 to get 20 12 02

11 + 20 11 03
21 11 , in

which the second summand vanishes by equation λε−2,ε−1.

2. The term (P.8) lies in the ideal, so one could leave it out. However,
to have a general formula it is better to keep it.

3. Arndt [1] gives a slightly different, more symmetric result (without
showing his computation). He has also 8 terms, (P.8) is missing and (P.4)
is replaced by two terms, which together are equivalent to it, modulo the
base ideal:

20 20 01 02
11 12

+
20 20 02 02

11 11
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In our computation we work systematically from the right to the left.
Once we take out a factor LγRε and replace it by Pγ+1,ε−1, we basically
repeat an earlier computation. Brohme [3] has given an inductive formula
for the resulting terms (P.i) and the remainder terms (R.i). The problem
lies in showing that the remainder terms lie in the ideal of the base space.
This problem was solved by Martin Hamm [6] on the basis of a more direct,
combinatorial description of the occurring terms. Each term is represented
by a rooted tree, which we draw horizontally (Hamm puts as usually the
root at the top). Accordingly we call for length of a tree, what is usually
called its height.

We consider as example the term (P.7). We first draw the tree such that
each vertex directly correspond to a position in the symbol for (P.7) above,
but then we transform it so that the bottom line is straight. This will be
the way we draw all trees in the sequel.

�
�

�

�
�

��
�

�

�

��
�

��
�
�
�
�

−→ � �

�

�

�
�

�

�
�
�
�
��

We explain how to compute the numbers ij in the symbol from the tree,

with the highest node at distance γ from the root giving Z
(ij)
ε−γ , and the other

nodes σ
(ij)
ε−γ . Given a tree T , the resulting polynomial in these variables will

be denoted by P (T ). We write λ(T ) for the corresponding term in λδ,ε,
obtained by putting zβ = lβ , and ρ(T ) for the term obtained with zβ = rβ .

Definition 4.3. Let T be a rooted tree. To each node a ∈ T we associate
two numbers, i and j, as follows. The second number j is the number of
child nodes of a. Let p(a) be the parent of a; if there exists a node b lying
directly above a, let p(b) be its parent. Then the number i is the number of
nodes between p(a) and p(b) (with p(a) and p(b) included), or the number
of nodes above p(a) (with p(a) included), if there is no node lying above a.

We also represent the remainder terms (R.i) by a tree. Such a term has

the form LγR
(i)
δ,ε/Lε−1. The tree will give R

(i)
δ,ε. If a tree T is given, we write

R(T ) for this polynomial. As example we consider (R.5). We observe that
its symbol contains the same pairs of numbers as (P.7), except that some

on the top are missing, and that the root represents σ
(ij)
ε instead of Z

(ij)
ε .
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We represent it by the following tree.
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To the open nodes (except the root) we do not attach numbers ij, but these
nodes do contribute to the numbers ij for the other nodes.

Example. For Pε−3,ε we find the following trees
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and we have the following trees for the remainder.
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We now characterise the tree representing terms P (T ) in the polyno-

mial Pδ,ε, which is obtained as above from Pδ,ε−1Z
(01)
ε /Lε−1, by working

systematically from the right to the left. Let a ∈ T be a node in a rooted
tree, then T (a) is the (maximal) subtree with a as root.

Definition 4.4. An α-tree is a rooted tree satisfying the following property:
if two nodes a and b have the same parent, and if b lies above a, then the
subtree T (b) is shorter than T (a). By A(k) we denote the set of all α-trees
of length k.

Theorem 4.5. The polynomial Pδ,ε is given by

Pδ,ε =
∑

T∈A(ε−δ+1)

P (T ).
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This Theorem claims two things: that the α-trees give exactly the
polynomial terms in the computation, and secondly that this is really the
polynomial Pδ,ε we are after. To show the second part we have to prove
that the remainder terms lie in the ideal generated by the equations of the
base space. As we have seen with (R.4) above, the use of the equations
leads to terms, which do not occur in the computation itself. We have to
characterise the corresponding trees. This leads to the concept of γ-tree
(Hamm has also β-trees [6]). We postpone the definition, and first consider
a sub-class of the α-trees.

Definition 4.6. An αγ-tree is an α-tree, whose root has at least two child
nodes and the subtree of the highest child of the root is unbranched (this
is the chain of open dots in our pictures). Let AC(k, l) be the set of all αγ-
trees of length k, such that the unbranched subtree (with the root included)
has length l.

Lemma 4.7. Modulo the equations λγ,ε−1 one has

Pδ,ε−1Z
(01)
ε /Lε−1 =

∑
T∈A(ε−δ)

P (T ) +
∑
γ

∑
T∈AC(ε−δ,ε−γ)

LγR(T )/Lε−1.

Proof. We compute as for Pε−3,ε. We first consider the rest terms R(T ).

Such a term comes about from writing Z
(0,k)
ε = Z

(0,k+1)
ε Rε + σ

(0,k+1)
ε .

We replace LγRε by Pγ+1,ε−1. The first term of Pγ+1,ε−1 is given by an

unbranched tree, it is 1011 · · ·1101, and writing Z
(01)
ε−1 = Lε−1Z

(11)
ε−1 +σ

(11)
ε−1

leads to a term P (T ) with the same tree as R(T ) (with the only difference
that all nodes are denoted by black dots).

We are left to show that the polynomial terms are exactly those repre-
sented by α-trees. This is done by induction. We can construct an α-tree
of length ε− δ by taking a root, an α-tree of length ε− δ− 1 as lowest sub-
tree, and as its complement an arbitrary α-tree of length at most ε− δ − 1
(conversely, given an α-tree of length ε− δ, the lowest subtree starting from
the root, but not including it, is α-tree of length ε− δ − 1, while its com-
plement has length at most ε− δ − 1). Doing this in all possible ways gives
all α-trees of length ε − δ. All these trees occur by our construction: in

all monomials of Pδ,ε−1Z
(01)
ε /Lε−1 we simultaneously take out factors Lγ ,

until we finally are left with λδ,ε−1Z
(01)
ε /Lε−1. Each LγRε is replaced by

Pγ+1,ε−1, and here we repeat the same computation as for Pγ+1,ε, except

that the upper index of Z
(0k)
ε is different. This means that we place all

possible trees of length at most ε− γ − 1 above the given tree.
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Remark. The above proof gives an inductive formula for the number of
α-trees of length k:

#A(k) = #A(k − 1) ·
k−1∑
i=0

#A(i).

One has #A(0) = 1, #A(1) = 1, #A(2) = 2, #A(3) = 8 and #A(4) = 96.
As we have seen in the example, some of the terms lie in the ideal J ,
generated by the equations of the base space. For k = 4 already 55 of the
96 terms lie in J , leaving “only” 41 terms. Still this number is considerably
larger than the relevant Catalan number (14 in this case).

As already mentioned, the use of ρ-equations brings us outside the realm
of α-trees. We retain some properties, which are automatically satisfied for
α-trees. The definition becomes rather involved.

Definition 4.8. A γ-tree of length k is a rooted tree satisfying the following
properties:

(i) there is only one node at distance k from the root, and it lies on the
bottom line,

(ii) the number of child nodes of a node at distance d from the root is at
most k − d,

(iii) a node a has a child node, if there exists a node b lying above a with
the same parent,

(iv) the root has at least two child nodes and the subtree of the highest
child of the root is unbranched.

By G(k, l) we denote the set of all γ-trees of length k, such that the
unbranched subtree (with the root included) has length l.

Example. We consider the term (R.4) above. The sum of the following two
terms

� �
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�

�
�

�

�

�
�

�� + � �

�

�

�

�
�

�

�
�
�
�
��

is a multiple of the equation ρε−2,ε, and the second graph is not an α-tree.

We have to show that the sum of all remainder terms (i.e., the sum of the
R(T ) over all αγ-trees) lies in the ideal J generated by the base equations.
We do this by showing that the sum of R(T ) over all γ-trees lies in the ideal,
as does the sum over all γ-trees which are not α-trees.
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Lemma 4.9. The sum
∑

T∈G(ε−δ,ε−γ)\AG(ε−δ,ε−γ)R(T ) lies in the ideal
generated by the λ-equations.

Proof. Let T be a γ-tree, which is not an α-tree. Then there exists a
node a, such that the subtree T (a) is an α-tree, but directly above a lies a
node b with the same parent, such that the bottom line of the subtree T (b)
is at least as long as T (a). Denote by R

(
T |T (a)

)
the monomial obtained

by only multiplying the factors of R(T ) corresponding to the nodes lying
in T (a). We claim that R

(
T |T (a)

)
= λ
(
T (a)

)
. We have to compute the

numbers ij. The second number, of child nodes, is determined by T (a)
only. The number i also coincides in R(T ) and P

(
T (a)

)
, except when c is

a node without nodes above it in T (a). Then its value in R(T ) is one more
than in P

(
T (a)

)
, so the same as in λ

(
P (a)

)
, proving the claim. Replacing

T (a) in T by an another α-tree of the same length gives a another γ-tree,
which is not an α-tree. So the sum of R(T ) over all γ-trees, differing only
in the α-tree with root a, is a multiple of a λ-equation. If T has several
such subtrees, we consider all possible replacements, and get the product of
λ-equations.

The next task is to find terms of ρ-equations in a given tree. For this
we introduce the operation of taking away one child node at each highest
node. This can be done for any γ-tree.

Definition 4.10. Let T be a γ-tree. We determine inductively a subtree
G(T ) with the same root as T by the following condition: if a1, . . . , ap are
the nodes in G(T ) at distance d from the root, then they have the same
child nodes in G(T ) as in T , except for the highest node ap, where we take
away the highest child node.

Example.
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Lemma 4.11. Suppose G(T ) is an α-tree. Then R
(
T |G(T )

)
= ρ
(
G(T )

)
if and only if the number of child nodes in T is at least 1 for every highest
lying node in G(T ).

The sum
∑

R(T ) over all trees satisfying the conditions of the lemma
lies in the ideal generated by the ρ-equations. If the number of child nodes
in T is at least 1 for every highest lying node in G(T ), but G(T ) is not an
α-tree, then one can find as before a term of a λ-equation.

The most difficult case is when the condition on the number of child
nodes is not satisfied. An example is the remainder term (R.6), which is
represented by the last two pictures in the previous example. The term
contains a factor, which is a term in a λ-equation, but the corresponding
dots are not connected by an edge. There is a way to connect the edges
differently, bringing a λ-term into evidence. For this we refer to [6, pp. 30–
40]. We conclude:

Lemma 4.12. The sum
∑

T∈G(ε−δ,ε−γ)R(T ) lies in the ideal generated by
the λ and ρ-equations.

Together with Lemma 4.9 this shows that the remainder∑
T∈AG(ε−δ,ε−γ)

R(T )

lies in the ideal J , thereby concluding the proof of Theorem 4.5.

Example (The base space for e = 6, see [1, 3]). There are 8 equations,
which read as

(l3 − r3)σ
(11)
3 , (l4 − r4)σ

(11)
4 ,

σ
(20)
2 σ

(11)
3 , σ

(20)
3 σ

(11)
4 , σ

(11)
3 σ

(02)
4 , σ

(11)
4 σ

(02)
5 ,

σ
(20)
2 σ

(21)
3 σ

(11)
4 + σ

(30)
2 σ

(20)
3 σ

(11)
3 σ

(12)
4 , σ

(11)
3 σ

(12)
4 σ

(02)
5 + σ

(21)
3 (σ(11)

4 )
2
σ
(03)
5 .

We note the relations

σ
(20)
3 − σ

(11)
3 = (l3 − r3)σ

(21)
3 , σ

(02)
4 − σ

(11)
4 = (r4 − l4)σ

(12)
4 .

We can take σ
(20)
2 , σ

(30)
2 , l3 − r3, σ

(11)
3 , σ

(21)
3 , r4 − l4, σ

(11)
4 , σ

(12)
4 , σ

(02)
5

and σ
(03)
5 as independent coordinates. The relation with the coordinates
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in Section 1, see formula (2), is the following: l3 − r3 = t3, σ
(11)
3 = s

(a3−1)
3 ,

σ
(12)
3 = s

(a3−2)
3 . Also for ε = 2 and ε = 5 it is simple: σ

(ij)
ε = s

(aε−i−j)
ε ,

but for ε = 4 it is more complicated: r4 − l4 = −t4, σ(11)
4 = s

(a4−1)
4 , while

σ
(12)
4 = s̃

(a4−2)
4 , where s̃

(ν)
ε is defined as following [1, 5.1.1], see also [3, p. 38],

by the equality

Z(00)
ε = (zε + tε)

aε−1∑
ν=0

s(ν)ε zaε−1−ν
ε = zε

aε−1∑
ν=0

s̃(ν)ε (zε + tε)
aε−1−ν ,

where we put s
(0)
ε = 1. This implies that

s̃(ν)ε =
ν∑

μ=0

(
aε − 2− μ

aε − 2− ν

)
(−tε)μ−νs(aε−1−μ)

ε .

The primary decomposition gives five reduced components and one embed-
ded component. The five components are parametrised by the five sparse
coloured triangles of height 2.

� �

�

: σ
(11)
3 = σ

(11)
4 = 0

� �

�

: σ
(20)
2 = l3 − r3 = σ

(11)
4 = σ

(12)
4 = 0

� �

�

: σ
(11)
3 = σ

(21)
3 = r4 − l4 = σ

(02)
5 = 0

� �

�

: σ
(20)
2 = σ

(30)
2 = l3 − r3 = r4 − l4 = σ

(11)
4 = σ

(02)
5 = 0

� �

�

: σ
(20)
2 = l3 − r3 = σ

(11)
3 = r4 − l4 = σ

(02)
5 = σ

(03)
5 = 0

The embedded component is supported at σ
(20)
2 = l3−r3 = σ

(11)
3 = r4 − l4 =

σ
(11)
4 = σ

(02)
5 = 0, which is the locus of singularities of embedding dimen-

sion 6.

The primary decomposition, given in the example above, holds if all aε
are large enough, meaning that aε ≥ max (kε), where the kε depend on
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the possible triangles. By openness of versality one deduces the structure
for all cyclic quotient singularities of the given embedding dimension. The
formulas for the base space and the total space of the deformation hold

in all cases, with suitable interpretations. We note that Z
(ij)
ε is a monic

polynomial in zε of degree aε − i − j, obtained by division with remain-

der. Therefore Z
(ij)
ε = 1 if i+ j = aε and Z

(ij)
ε = 0 if i+ j > aε. For the

remainder terms σ
(ij)
ε we find therefore that σ

(ij)
ε = 1 if i+ j = aε + 1 and

σ
(ij)
ε = 0 if i+ j > aε + 1. By using these values the formulas hold. Also

the description of the reduced components holds in general, if one takes an
equation 1 = 0 to mean that the component is absent.

Example (The cone over the rational normal curve [1, 3]).

Proposition 4.13. For the cone over the rational normal curve of degree
e−1 the versal deformation is given by the equations Lδ−1Rε+1 = Pδ,ε with

Pε,ε = Z
(00)
ε and

Pδ,ε = Z
(10)
δ Z(01)

ε +
ε−δ−1∑
γ=1

σ
(11)
ε−γZ

(10)
δ+γ

for ε− δ > 0.

Proof. We derive the formula from Hamm’s description of the equations

(i.e., Theorem 4.5). All terms in the equations containing Z
(ij)
ε with

i+ j > 2 and σ
(ij)
ε with i+ j > 3 are absent. We characterise the remaining

α-trees. We have of course a simple chain, giving rise to the first term in

the formula. Suppose we have a factor σ
(11)
ε−γ , coming from a node a on the

bottom line. Then there is a node lying directly above it, having the same
parent. The unique child node of a has i = 2. If it has itself a child node,
then necessarily ij = 21, and there is a node lying above it. This process
continues until we come to an end node with ij = 20. If the parent of a is
not the root, then necessarily ij = 12 for it, so there is a node lying above it.
For the node above a we find then that i = 2, and there lies a whole chain
above the chain starting with this node. In this way we proceed to the root,
which has ij = 02. We find that the tree has the following shape: from each
node on the right of the node a originates a chain of maximal length. An
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example is

� �

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�

��

Finally we observe that the lowest lying child node of the root or of a node
with ij = 12 cannot have i = 2, and that the next to last node on the left
cannot have ij = 12, so there has to be a node a with ij = 11.

Consider now P (T ), if T is not a chain. The only node with ij = 10 lies

as end-node on the highest chain, so indeed P (T ) = σ
(11)
ε−γZ

(10)
δ+γ .

It follows that

λδ,ε =
ε−δ−1∑
γ=0

σ
(11)
ε−γσ

(20)
δ+γ

and

ρδ,ε = σ
(11)
δ σ(02)

ε +

ε−δ−1∑
γ=1

σ
(11)
ε−γσ

(11)
δ+γ .

With lε − rε = tε, σ
(11)
ε = sε, σ

(20)
ε = sε + tε and σ

(02)
ε = sε − tε we get the

same formulas as Arndt gives [1, 5.1.4].

Note that (σ(11)
ε )

3
= σ

(11)
ε ρε−1,ε+1−σ(11)

ε−1ρε−1,ε, so σ
(11)
ε lies in the radical

of the ideal for 3 < ε < e− 1; for 2 < ε < e− 2 one has a formula with λ-
equations. So indeed the Artin component is the only component, if e > 5.

Other applications of the explicit equations include

• the discriminant of the components and adjacencies, studied by Chris-
tophersen [4] and Brohme [3],

• embedded components. For low embedding dimension Brohme found
all components. He made a general conjecture [3, 4.4].
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5. Reduced Base Space

The ideal J of the base space is described explicitly by Theorems 4.2
and 4.5. We have to determine the radical

√
J of this ideal. We are

able to do this explicitly for low embedding dimension, and formulate a
conjecture in general. We prove that the proposed ideal describes the
reduced components. The combinatorics involved resembles that described
by Jan Christophersen in his thesis [5]. To prove the conjectural part one
has to show that the monomials we give below, really lie in

√
J , something

we do not do here.

Example (e = 6 continued). We multiply ρ3,5, the last one of the 8

equations for the base space, by σ
(11)
4 . Then the first summand contains

the factors σ
(11)
4 σ

(02)
5 so lies in the ideal J . Therefore also the second term

σ
(21)
3 (σ(11)

4 )
3
σ
(03)
5 lies in J , and σ

(21)
3 σ

(11)
4 σ

(03)
5 lies in the radical

√
J . Then

also the first summand of ρ3,5 lies in
√
J . If we multiply λ2,4 with σ

(11)
4 , then

the second summand lies in J . We find that the first summand of λ2,4 lies

in the radical, so also the second summand. One has σ
(11)
3 (σ(20)

3 − σ
(11)
3 ) =

σ
(11)
3 (l3 − r3)σ

(21)
3 , which lies in the ideal, so not only the second summand

σ
(30)
2 σ

(20)
3 σ

(11)
3 σ

(12)
4 , but also σ

(30)
2 (σ(11)

3 )
2
σ
(12)
4 and therefore σ

(30)
2 σ

(11)
3 σ

(12)
4

lie in
√
J . We find the following equations

(l3 − r3)σ
(11)
3 , (l4 − r4)σ

(11)
4 ,

σ
(20)
2 σ

(11)
3 , σ

(20)
3 σ

(11)
4 , σ

(11)
3 σ

(02)
4 , σ

(11)
4 σ

(02)
5 ,

σ
(20)
2 σ

(21)
3 σ

(11)
4 , σ

(30)
2 σ

(11)
3 σ

(12)
4 , σ

(11)
3 σ

(12)
4 σ

(02)
5 , σ

(21)
3 σ

(11)
4 σ

(03)
5 .

This ideal is not reduced, as it contains (σ(11)
3 )

2
σ
(11)
4 = σ

(11)
3 σ

(20)
3 σ

(11)
4 −

σ
(11)
3 (l3 − r3)σ

(21)
3 σ

(11)
4 , but not σ

(11)
3 σ

(11)
4 . But it is easy to find the reduced

components from the given equations.

Our first, rough conjecture is that each summand of the equations λδ,ε,
ρδ,ε lies in the radical

√
J . Let us look at ρε−3,ε. We note that (P.4) and

(P.5) yield the same term, being 21 21 11 03
11 12 and 21 11 12 03

21 11 respectively. As
we have the equation 21 11 03 in the radical, these terms do not contribute
new equations. As (P.8) itself already lies in the ideal, we are left with
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5 terms (a Catalan number!). One computes that indeed each summand
lies in the radical. We look at the term in ρε−3,ε, coming from (P.6):

31 11 12 03
20 12
11

We claim that it is associated to the extended triangle

� � �

� �

�

The easiest way to see this is via the numbers kε and αε, being [k] =
[3, 1, 2, 2] and (α) = (1, 3, 2, 1) in this case. One sees that there are αε

factors σ
(ij)
ε , and they all have i+ j = kε + 1. The other terms can be

parametrised in the same way by the other extended triangles. The same
picture parametrises the term in λε−3,ε, coming from (P.6):

40 20 21 12
20 12
11

In the radical we find 31 11 12 03 and 40 11 12 12 . For the last term we
compute as follows: σ

(12)
ε−1(σ

(21)
ε−1 − σ

(12)
ε−1) = σ

(12)
ε−1(lε−1 − rε−1)σ

(22)
ε−1 =

(σ(11)
ε−1 − σ

(02)
ε−1)σ

(22)
ε−1 , and we observe that the term contains the factors σ

(20)
ε−2

and σ
(11)
ε−2 .

We can now make our conjecture more precise. As remarked before,
we do not quite get the radical

√
J of the ideal of the base space, but an

intermediate ideal, obtained from the summands in the generators of J . As

variables we use lε − rε, and the σ
(ij)
ε , which are connected by the relations

σ(i+1,j)
ε − σ(i,j+1)

ε = (lε − rε)σ
(i+1,j+1)
ε .

Conjecture. For the ideal J of the base space of the versal deformation of
a cyclic quotient singularity of embedding dimension e and its radical

√
J

holds that
√
J =

√
J ′ ⊃ J ′ ⊃ J , where J ′ is the ideal generated by

(lε−rε)σ(11)
ε , for 2 < ε < e−1 and monomials λ(�δ,ε), 2 ≤ δ < ε < e−1, and

ρ(�δ,ε), 2 < δ < ε ≤ e− 1, parametrised by sparse coloured triangles �δ,ε,
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of the form
∏ε

β=δ σ
(iβjβ)
β . The numbers iβ , jβ are determined as follows: if

αβ > 1, then in both λ(�δ,ε) and ρ(�δ,ε)

iβ = #{black dots on right half-line lε}

jβ = #{black dots on left half-line lε}

but if αβ = 1, then in λ(�δ,ε)

iβ = #{black dots on right half-line lε}+ 1

jβ = #{black dots on left half-line lε}

and in ρ(�δ,ε)

iβ = #{black dots on right half-line lε}

jβ = #{black dots on left half-line lε}+ 1

Example.
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� �

�

One has λ(�δ,ε) = 40 11 22 11 13 and ρ(�δ,ε) = 31 11 22 11 04 .

Remark. The generators of J ′ correspond to certain terms in generators
of J , so there is a special subclass of α-trees, counted by the Catalan
numbers. It would be interesting to characterise them. The five trees of
length 3 can be seen from the previous pictures. We now list all 14 trees of
length 4.
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Inductive proofs about the reduced components often use the procedure
of blowing up and blowing down [11, 1.1]. The term comes from the analogy
with chains of rational curves on a smooth surface, which can be described
by continued fractions. For sparse coloured triangles it means the following
[3, Lemma 1.8].

Blowing up is a way to obtain an extended triangle of height e− 2 from
an extended triangle of height e− 3. Choose an index 2 ≤ ε ≤ e. We define
a shift function s : {2, . . . , e−1} → {2, . . . , ε−1}∪{ε+1, . . . , e} by s(β) = β
if β ∈ {2, . . . , ε − 1} and s(β) = β + 1 if β ∈ {ε, . . . , e − 1}. The blow-up
Blε(�) of � at the index ε is the triangle with

(
s(β), s(γ)

)
∈ B
(
Blε(�)

)
if

and only if (β, γ) ∈ B(�), and from the points on the line lε only (ε− 1, ε)
and (ε, ε+1) are black. If ε = 2, then only (2, 3) is black, while only (e− 1, e)
is black if ε = e. By deleting the base line we get the blow-up Blε(�). In
terms of pictures this means that one moves the sector, bounded by lε and
lε−1 with lowest point (ε− 1, ε), one position up, and moves the arising two
triangles sideways, to make room for a new line lε, which has no black dots
in Blε(�). If ε = 2 or ε = e one just adds an extra line without black dots
to the triangle.
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Example.
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The inverse process is called blowing down at ε. This is possible at ε,
for 2 < ε < e, if the dot (ε − 1, ε + 1) is black; by Lemma 3.2 the line lε
does not contain black dots. Actually, if lε is empty, but αε > 1, i.e., there
are black dots above it, then it follows that (ε− 1, ε+1) is black: otherwise
there cannot be enough black dots in a triangle with black vertex on the
lowest level.

Proposition 5.1. The ideal J ′ has Ce−3 =
1

e−2

(
2(e−3)
e−3

)
reduced components.

Proof. If σ
(11)
ε = 0 for all 2 < ε < e − 1, the equations are satisfied: if a

triangle � contains black dots, there has to be at least one on the base line,

at (ε − 1, ε + 1), so σ
(11)
ε = 0 for that ε; an equation λ(�) for an empty

triangle ends with a σ
(11)
ε for some ε < e− 1, and ρ(�) starts with a σ

(11)
ε

for some ε > 2. So the Artin component is a component.

Suppose now that there exists an ε with σ
(11)
ε 
= 0. Let J ′

ε be the

saturation of J ′ by σ
(11)
ε , i.e., J ′

ε = ∪(J ′ : (σ(11)
ε )

i
). It yields the equation

lε − rε = 0, so σ
(20)
ε = σ

(11)
ε = σ

(02)
ε . We conclude that σ

(20)
ε−1 = σ

(11)
ε−1 = 0

and σ
(11)
ε+1 = σ

(02)
ε+1 = 0 (if ε = 2 or ε = e − 1 the statements have to

be modified somewhat). As σ
(20)
ε−1 − σ

(11)
ε−1 = σ

(21)
ε−1(lε−1 − rε−1), one has

σ
(21)
ε−1(lε−1 − rε−1) ∈ J ′

ε, and likewise σ
(12)
ε+1(lε+1 − rε+1) ∈ J ′

ε.

Consider a monomial λ(�β,γ) or ρ(�β,γ), containing σ
(11)
ε (or σ

(20)
ε if

β = ε, or σ
(02)
ε if ε = γ). Then �β,γ = Blε(�β,γ−1), and the monomial

in question is obtained from λ(�β,γ−1) or ρ(�β,γ−1) by leaving the σ
(ij)
δ

unchanged for δ < ε−1, replacing σ
(ij)
ε−1 by σ

(i+1,j)
ε−1 , inserting σ

(11)
ε , replacing

σ
(ij)
ε by σ

(i,j+1)
ε+1 and σ

(ij)
δ by σ

(ij)
δ+1 for δ > ε. We claim that the polynomials

considered so far, together with the monomials, not involving σ
(ij)
ε−1, σ

(ij)
ε

and σ
(ij)
ε+1 at all, generate the ideal J ′

ε. It follows then that this ideal, up



200 J. Stevens

to renaming the coordinates as above, and up to some linear equations, is
an ideal of the same type as J ′, but one embedding dimension lower. By
induction we conclude that J ′

ε describes components, parametrised by sparse

coloured triangles, blown up at ε. By varying ε, with σ
(11)
ε 
= 0, we obtain

all components (except the Artin component, which we already have).

It remains to prove the claim. The not yet considered generators of

J ′ come in two types, those containing σ
(ij)
ε with i + j > 2, and those

not containing a σ
(ij)
ε at all, but ending with σ

(ij)
ε−1 or starting with σ

(ij)
ε+1.

Regarding the first type, we prove that such a monomial is a multiple of
one of the claimed generators, by induction on the length of the monomial.
For this we note that the claim holds for the monomial if and only if it
holds for the monomial, obtained by blowing down the triangle at δ with
δ 
= ε−1, ε+1. The base of the induction is the case of monomials containing

σ
(20)
ε−1 , σ

(11)
ε−1 , σ

(11)
ε+1 or σ

(02)
ε+1 . As to the second type, we consider those starting

with σ
(ij)
ε+1. If the term is of the form λ(�ε+ 1, γ), then it starts with σ

(i0)
ε+1.

One has σ
(i0)
ε+1 = σ

(i−1,1)
ε+1 +σ

(i1)
ε+1(lε+1−rε+1). The term obtained by replacing

σ
(i0)
ε+1 by σ

(i1)
ε+1, is one of our generators. We are left with monomials, starting

with σ
(i−i,1)
ε+1 ; such monomials also come from ρ(�ε+ 1, γ). For those the

claim is again shown by induction, using blowing down.
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Computing Versal Deformations of

Singularities with Hauser’s Algorithm

JAN STEVENS

Hauser’s algorithm provides an alternative approach to the computation of versal
deformations, not based on step by step extending infinitesimal deformations. We
use this method to compute nontrivial examples.

Introduction

In describing complex analytic spaces locally by equations one needs in gen-
eral more equations than the codimension. Although linearly independent,
these equations will not be algebraically independent, but are related by so
called syzygies. Therefore the perturbations of the equations cannot be cho-
sen independently. This makes the description of all possible perturbations
into a nontrivial problem.

Normally one extends infinitesimal deformations step for step. This can
lead to a never ending computation, which has to be cut off after a finite
number of steps. Most calculations on record avoid this problem by only
considering deformations of negative degree of quasi-homogeneous singular-
ities, where the base space also has polynomial quasi-homogeneous equa-
tions. An alternative method, based on an idea of Teissier’s (see [20]), was
developed by Herwig Hauser in his thesis [10], see also [12, 11]. Given a sin-
gularity (X0, 0) ⊂ (Cn, 0) defined by a system of equations f = (f1, . . . , fk),
one first determines the versal unfolding of the map f : (Cn, 0) → (Ck, 0)
without bothering about syzygies and then computes the stratum over which
one has a deformation of the original singularity. In general the map f is not
of finite singularity type, so its versal unfolding is infinite dimensional and
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one is forced to work in a suitable category of infinite dimensional spaces,
e.g., Banach analytic spaces. The result is an infinite system of equations
in an infinite number of variables, most of which can be eliminated.

The examples given by Hauser himself mostly concern codimension two
determinantal singularities, which can be treated much easier with other
methods [15]. Here we study more complicated examples. The original
problem we were interested in, was to find the versal deformation of the
cone over a hypercanonical curve (such a curve is the intersection of the
projective cone over a rational normal curve with a quadric hypersurface).
The cone over the rational normal curve of degree 4 itself is first serious
test case. The computation is rather involved. It can be short-cut by using
the extra information that the versal deformation is only of negative degree.
By using similar tricks results for the hypercanonical cone of degree 8 are
obtained. For some other singularities we discuss how one in principle can
get the versal deformation.

The method embeds the deformation problem in a larger unobstructed
one, which is easy to solve. The price one has to pay is the introduction of
many new variables. The equations tend to become unmanageable. This is a
intrinsic difficulty in deformation computations. The practical limitations of
Hauser’s algorithm are approximately the same as for the standard method.
Without quasi-homogeneity one does not come very long. All this suggests
that one should refrain from computing versal deformations, except in very
special cases. Only very symmetric equations are suitable for computation
– however one may hope that they are representative for the general case.

After a short introduction to versal deformations and a quick description
of the algorithm we go into details for some of the steps. The examples we
study in detail are the cone over the rational normal curve of degree 4 and
the cone over a hypercanonical curve of degree 8. We add some remarks on
computations in the multiplicity five case. Finally we show how Hauser’s
ideas can be used to find deformations of the Stanley–Reisner ring of the
icosahedron. We conclude with a discussion of the results.

1. Versal Deformations

Let (X0, 0) ⊂ (Cn, 0) be the germ of a complex analytic space, given by
equations f1 = · · · = fk = 0. A deformation of X0 is determined by
a deformation of its local ring OX0 = C{x1, . . . , xn}/(f1, . . . , fk) as C-
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algebra. This means that the underlying C-module structure is the same,
but the multiplication is perturbed. The C-module structure is particularly
easy if OX0 is Cohen–Macaulay of dimension d: for a suitable choice of
coordinates (sufficiently general will do) it is a free C{x1, . . . , xd}-module
(in fact, this property can be taken as the definition of Cohen–Macaulay).
Such an additive realisation can be found by computing a standard basis.
Associativity gives a nontrivial constraint on the possible perturbations.
However, one mostly uses perturbations of generators of the ideal. The
connection with the previous point of view is given by the concept of flatness.
Recall that by definition a deformation π : XS → S of X0 over a base germ
(S, 0) is a flat map π such that X0 is isomorphic to π(−1)(0). Flatness
of the map π means that OXS

is a flat OS-module. In particular, if the
map is finite, so X0 is a fat point, this means that OXS

is a free OS-
module. Flatness captures the idea that the underlying C-module structure
is constant in a deformation over the base space S.

To give a workable definition of flatness we start from a finite free
resolution of OX0

(1) 0←− OX0 ←− OCn
f←− O k

Cn
r←− O l

Cn ,

where f is the row vector (f1, . . . , fk) containing the generators of the ideal
of X0 and r is a matrix whose columns generates the module of relations.
Each column gives rise to a relation, or syzygy,

∑
i firij = 0. We may

realise XS as embedded in Cn × S. The condition for flatness is now that
the resolution (1) of OX0 lifts to a resolution of OXS

:

(2) 0←− OXS
←− OCn×S

F←− O k
Cn×S

R←− O l
Cn×S ,

or alternatively, that every syzygy
∑

i firij = 0 between the generators of
the ideal of X0 lifts to a syzygy

∑
i FiRij = 0 between the generators of the

ideal of XS in Cn × S. A proof of this characterisation of flatness can be
found in [9] and [12].

The lifting of relations imposes no extra conditions for complete inter-
sections. In that case the resolution is given by the Koszul complex. The
syzygy module is generated by the trivial syzygies fi · fj − fj · fi = 0 and
they can be lifted to Fi · Fj − Fj · Fi = 0. In particular, every perturba-
tion of the equations fi defines a deformation. Less obvious is the case
of codimension two Cohen–Macaulay singularities (see [15]), which by the
Hilbert–Burch theorem have a resolution of the form

0←− OX0 ←− OCn
Δ←− O k+1

Cn
r←− O k

Cn ←− 0,
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where Δ may be taken to be the vector of maximal minors of the matrix r.
Starting from a set of generators (f0, . . . , fk) one computes a syzygy matrix
r whose minors are up to a unit the fi. Deformations are obtained by
perturbing the syzygy matrix.

A versal deformation is the most general one, in the sense that all other
deformations can be obtained from it. A deformation XS → S of X0 is
versal if for every deformation XT → T there exists a map ψ : T → S
such that XT is isomorphic to the pull-back ψ∗XS ; moreover, if a map ψ′ :
T ′ → S is already given on a subspace T ′ ⊂ T , then ψ can be chosen as an
extension of ψ′. Such a map is not unique, but if it is unique on the level of
tangent spaces, the deformation is called semi-universal or miniversal. By
a theorem of Grauert versal deformations of isolated singularities exist. For
an extended discussion see [19].

The isomorphism classes of first order infinitesimal deformations form
a vector space, usually called T 1, which (by definition of versality) is also
the Zariski tangent space to the base space of the miniversal deformation.
In the computer algebra system Singular [8] the computation of T 1 is
implemented. The obstructions to extend infinitesimal deformations land in
the vector space T 2 (also computable with Singular). Its dimension gives
an upper bound for the number of equations defining the base space. In fact,
one usually constructs the base space as fibre of a non-linear obstruction
map ob : T 1 → T 2.

2. Hauser’s Algorithm

The basic idea is to first describe a minimal perturbation of the equations
fi and only after that be concerned about the relations. To compute the
versal unfolding of a map f : (Cn, 0)→ (Ck, 0) one determines the tangent
space

Tf = (f1, . . . , fk) · Ok
Cn,0 +

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
· OCn,0

to the K-orbit of f . Let (gi) be a monomial basis for the quotient Kf =
Ok

Cn,0/Tf . The versal unfolding is then F : (Cn × S, 0)→ (Ck, 0), given
by F (x, s) = f(x) +

∑
sigi, with S isomorphic to Kf . If one starts with a

map f , defining a singularity, which is not a complete intersection, then the
C-dimension of Kf is in general not finite and one has to take the base space
(S, 0) in a suitable category of infinite dimensional spaces, like the category
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of inductive limits of objects and morphisms of the category of germs of
Banach-analytic spaces. In fact, one has to extend the concept of versality
to such a category. We do not enter into details, which can be found in
Hauser’s papers [11, 12].

Let (X, 0) be the fibre of the map F and π : (X, 0) → (S, 0) be the
induced morphism. In the present infinite-dimensional situation it still holds
that π is flat if and only if the relations fr = 0 between the fi can be lifted
to relations FR = 0 between the Fi. The maximal subspace (Z, 0) ⊂ (S, 0)
over which π is flat is called the flattener of π. It can be determined using
standard basis techniques. Given the unfolding F and the relation matrix r
one considers Fr and reduces it to normal form, in which only specific
monomials in x occur. For flatness the OS,0-coefficients of these monomials
have to vanish, which gives us the required equations for (Z, 0). One uses
the generalised Weierstraß division theorem, which is not algorithmic. For
important special cases an algorithm exists.

Before describing the algorithm in more detail, we give a simple example.

Example 1. Let X0 be the curve consisting of the three coordinate axes
in C3. We take f : C3 → C3 given by f(x, y, z) = (yz, xz, xy). By hand or
with a computer algebra system (using Gröbner bases with a global ordering,
as the singularity is homogeneous) one computes easily the versal unfolding

yz + ay + bz +
∑
i=0

dix
i,

xz + cz +
∑
i=0

eiy
i,

xy +
∑
i=0

giz
i.

To write only a finite number of deformation variables we collect the un-
folding parameters in power series, writing D =

∑
dix

i, E =
∑

eiy
i and

G =
∑

giz
i. Then F = (yz + ay + bz +D,xz + cz + E, xy +G). We lift

relations:

(xy +G)z − (xz + cz + E)y + (yz + ay + bz +D)c

= −y(E − ac) + z(G+ bc) +Dc

(xy +G)(z + a) + (xz + cz + E)b− (yz + ay + bz +D)x

= −xD + z(G+ bc) +Ga+ Eb
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The right hand side cannot be reduced further because only pure power of
the variables (x, y, z) occur. We take coefficients of x, y and z and con-
clude that D = 0, E = ac, so e0 = ac, ei = 0 for i > 0, and that G = −bc,
so g0 = −bc, gi = 0 for i > 0. The versal deformation of X0 is (yz + ay + bz,
xz + cz + ac, xy − bc). As the singularity is Cohen–Macaulay of codimen-
sion two, it and its versal deformation are determinantal [15] and the defin-
ing matrix is given by the lift of the relations:(

z −y c
z + a b −x

)
.

Hauser’s algorithm. The versal deformation can by computed by the
following steps.

(1) Write the singularity (X0, 0) as fibre (f−1(0), 0) of a suitable chosen
map f : (Cn, 0)→ (Ck, 0).

(2) Compute a monomial basis for the quotient Kf = Ok
(Cn,0)/Tf and

construct the versal unfolding F : (Cn × S, 0)→ (Ck, 0) of f .

(3) Compute a basis r of the module of relations between the components
of f .

(4) Lift by division of the components of Fr the relation matrix r to a
matrix R such that each component of FR is in reduced normal form.

(5) Solve the infinite system of equations given by the vanishing of the
O(S,0)-coefficients of the series FR, to find the base space (Z, 0) ⊂
(S, 0).

The vector space T 1 is obtained by solving the linearised equations.

Choosing generators of the ideal of X0 ⊂ Cn realises X0 as fibre f−1(0)
of a map germ f : Cn → Ck. A good choice of f simplifies the computations
to come. A natural requirement is that the components (f1, . . . , fk) form a
standard basis of the ideal. Furthermore, the ring of d-dimensional Cohen–
Macaulay singularity should be realised as free C{x1, . . . , xd}-module. In the
simple example above, of the coordinate axes in C3, this was not necessary,
but in general we will have problems lifting the relations without this
assumption. We postpone the description of the normal form to the next
section, where we go into details on standard bases.

The infinite system of equations will come out as a finite system of
equations between power series with variable coefficients. We give a simple
example, of how such a system can look like.
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Example 2. Let C =
∑

ciy
i be a power series and consider an equation

of the form (y − b)C = a, where a and b do not depend on y. We get the
infinite system of equations

−bc0 = a

c0 − bc1 = 0

c1 − bc2 = 0

...

We conclude that c0 = bc1 = b2c2 = · · · , and as we are looking for a solution
in the neighbourhood of the origin we may assume that |b| < 1 and |ci| < 1
for all i. We conclude that c0 = 0 and similarly that ci = 0 for all i, and
that a = 0.

3. Standard Bases

Let O denote the ring C{x1, . . . , xn}. We are interested in submodules M
of the free module Oq. Each element f ∈ Oq can be written f =

∑
fα,ix

αei
with fα,i ∈ C, and the ei a basis of Oq. Choose a multiplicative well-
ordering < on the monomials xαei, e.g. with help of an injective linear form
L : Nn × {1, . . . , q} → R+. For a non-zero f ∈ Oq we define the exponent

exp (f) = min
{
(α, i) | fα,i 
= 0

}
and its initial form as in (f) = fα,ix

αei with (α, i) = exp (f). One sets
exp (0) =∞ and in (0) = 0. For a submodule M ⊂ Oq one has semigroup
of exponents exp (M) =

{
exp (f) | f ∈M \ 0

}
and the module of initial

forms in (M) =
{
in (f) | f ∈M

}
. We define

Δ(M) =
{
g ∈ Oq | gα,i = 0 if (α, i) ∈ exp (M)

}
.

Definition. A standard basis of the module M is a finite collection (f1, . . . ,
fk) of elements of M , such that their initials forms

(
in (f1), . . . , in (fk)

)
generate the module in (M).

On the polynomial ring C[x1, . . . , xn] we can consider the highest power
and look at the ideal of leading forms. A standard basis in that context is
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usually called Gröbner basis. Standard bases exist and can be computed
with the Mora tangent cone algorithm, implemented for example in Singu-

lar [8]. This enables us to do step 2 and 3 in the algorithm. To be more
precise, the input has to consist of polynomials and one computes not with
O but with the localisation K[x1, . . . , xn]m of the polynomial ring at the
maximal ideal m = (x1, . . . , xn), where K = Q or a finite field.

In the power series case more can be shown, using the generalised
Weierstraß division theorem, see [7, 12]. For algebraic power series a division
algorithm exists, for the hypersurface case see [1].

Theorem 1.

a) Let (f1, . . . , fk) generate M . Every g ∈ Oq can be written as

g =
∑

mifi + h

with mi ∈ O and a unique rest h ∈ Δ(M).

b) Equivalently, the natural projection Δ(M) → Oq/M is an isomor-
phism of vector spaces.

One may choose generators fi of M such that fi − in (fi) ∈ Δ(M).
Indeed, let gj be any set of generators, whose initial terms generate in (M).
By division gj − in (gj) =

∑
mjigi + rj . Put fj = in (gj) + rj and let

N ⊂M be the module, generated by the fj . Then Δ(N) = Δ(M), so by
the Division Theorem N = M . In particular the fi form a standard basis.

There is also a parametric version of the Division Theorem, which even
holds in the infinite dimensional case [12, A.II.4]. Let (S, 0) be a parameter
space. Let M be a submodule of finite type of Oq

S×Cn,0 and M0 its image

in Oq
Cn,0 = Oq. We now set

Δ(M) =
{
g ∈ Oq

S×Cn,0 | gα,i(s) = 0 if (α, i) ∈ exp (M0)
}
.

Proposition 2.

a) The natural projection Δ(M)→ Oq
S×Cn,0/M is surjective.

b) Equivalently, let (F1, . . . , Fk) generate M . Every G ∈ Oq
S×Cn,0 can be

written as

G =
∑

MiFi +H

with H ∈ Δ(M) and the image h of H in Δ(M0) is unique.
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To do step 4 of the algorithm we lift a relation fr by applying division
with parameters to Fr: we write

∑
Firi =

∑
QiFi + H with H ∈ Δ(I),

where I is the ideal generated by the Fi. As
∑

firi = 0 we may assume
that Qi ∈ mS . We then define R by Ri = ri −Qi. In general the division is
only “theoretically” constructive, as Hauser puts it [11]. But under special
assumptions there is a finite division algorithm.

It is important to choose variables and equations for the singularity
appropriately. For a d-dimensional Cohen–Macaulay singularity of multi-
plicity m one takes a Noether normalisation, i.e., one realises X as finite
cover of degree m of a smooth d-dimensional germ. This makes OX into a
free C{y1, . . . , yd}-module with a finite basis consisting of monomials in the
variables xi. We take a compatible ordering, such that the initial forms of
the generators of the ideal depend only on the x-variables. For a general sin-
gularity this is not possible, but it is very useful to choose coordinates such
that the initial forms depend on as few coordinates as possible (although
this was not necessary in the simple Example 1).

For zero-dimensional singularities and more generally for Cohen–
Macaulay singularities, a finite division algorithm is possible if one increases
the number of elements in the standard basis [12, A.II.3]. Suppose that
fi − in (fi) ∈ Δ(I). In general, reducing a monomial xm /∈ Δ(I) with an fi
introduces higher order terms: if m = α+exp (fi) and xβ ∈ Δ(I) is a mono-
mial occurring in fi, then we need to reduce xα+β . The condition, which
Hauser gives (and which already occurs with Janet), is now that there ex-
ists a fj with α+ β = α′ + exp (fj) such that α′ < α in the given ordering.
If this condition holds for all xβ ∈ Δ(I), then we can choose our reductions
with smaller and smaller multipliers and the process is finite. A sufficient
condition is that all exponents on the staircase of I are exponents of stan-
dard basis elements, see also the example below. Each new standard basis
element gives rise to many new unfolding parameters.

It is desirable to keep the number of variables as small as possible. In
practice the most important condition allowing a finite division algorithm,
is that the standard basis is at the same time a Gröbner basis for a suitable
global ordering. This means that the initial forms of the equations are also
the maximal terms for a different ordering on the monomials. This condition
is satisfied for quasi-homogeneous singularities.

Example 3. Consider the Tyurina algebra of the singularity f(x, y) =
x3y2 + xy5 + x7. Our ring is A = C{x, y}/I, where I = (f, ∂f∂x ,

∂f
∂y ). The

ring A defines a fat point of multiplicity 19. A Singular computation gives
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that dimT 1
A = 26. As the singularity is Cohen–Macaulay of codimension

two, all deformations are determinantal. It is therefore easy to describe the
versal deformation; we do not do that here.

A standard basis (g1, . . . , g5) for I is:(
2x3y + 5xy4, 3x2y2 + y5 + 7x6, xy5, x7, y8

)
To compute the versal unfolding of g : C2 → C5 we determine the initial

forms of the ideal ( ∂g
∂x ,

∂g
∂y) ⊂ A5:⎛⎜⎜⎜⎜⎝

2x3

0
0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
6x2y
0
0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0

6xy3

0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
5xy4

0
0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
x6

0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
y6

0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
y7

0
0
0
0

⎞⎟⎟⎟⎟⎠ .

We need 14+12+19+19+19 = 83 unfolding parameters. To ensure a finite
division algorithm one has to complete the standard basis of the ideal I with
the exponents on the sides of the staircase (but not in the corners), giving
7 new elements, which increases the number of unfolding parameters with
7× 19.

The staircase gets a better form by applying a general linear transfor-
mation, for which we can take y �→ x + y. We compute the new standard
basis:(

3x4 − 3x2y2 + 11x2y3 + 10xy4 − y5 − 6xy5 − 13y6 − 45y7,

12x3y + 12x2y2 − 14x2y3 − 10xy4 + 4y5 − 6xy5 + 22y6 + 105y7,

3x2y4 + 3xy5 − 4y7, xy6, y8
)
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For the global ordering with weights (2, 1) these polynomials form a
Gröbner basis with the same leading terms. A Singular computation
gives(

12x3y − 14x2y3 − 6xy5 + 105y7 + 12x2y2 − 10xy4 + 22y6 + 4y5,

y8, xy6, 3x2y4 + 3xy5 − 4y7,

3x4 + 11x2y3 − 6xy5 − 45y7 − 3x2y2 + 10xy4 − 13y6 − y5
)
.

The unfolding is by terms of lower weight, so the normal form given by the
Gröbner basis leads to the desired lifting.

Example 4. One of the simplest examples of a singularity which is not
Cohen–Macaulay is the one-point union of two planes in C4. We choose
coordinates (w, z, y, x) such that the last two are coordinate functions on
both planes. We take as generators of the ideal(

z2 − xz, zw − xw,w2 − yw, yz − xw
)
,

just as in [12, III.2, Ex. 3]. As the singularity is homogeneous we compute
with a global ordering, which is the product ordering with the degree re-
verse lexicographical ordering on the first three coordinates. This gives the
following additive representation of the ring:

C{x, y}+ C{x, y}w + C{x}z.

The image of ( ∂f
∂w ,

∂f
∂z ,

∂f
∂y ,

∂f
∂x) in (O/I)4 is for a suitable ordering on the

generators of the free module generated by⎛⎜⎜⎝
0

z − x
−y

2z − x

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−z + x

0
0

w − y

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2z − x

w
0
y

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
w
−z

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
x2

yx
y2

0

⎞⎟⎟⎠ .
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In particular, the leading term of the vector (0, z−x,−y, 2z−x) is (0, z, 0, 0).
By taking a different ordering we get different generators, but we can get
from the other vectors the same leading terms, while (0, z − x,−y, 2z − x)
gives (0, 0, 0, 2z).

This gives us two different choices for the versal unfolding. For the first
one lifting of the relations is a finite computation, whereas the second one
is Hauser’s example where such an algorithm is impossible. To be more
precise, let capital deformation variables stand for power series in x and
y, while lower case ones depend only on x. Then the first choice gives the
unfolding

z2 − xz +A+ bz + (Cy + c)w,

zw − xw +Dy + d+ iz,

w2 − yw + e+ fz + gy,

yz − xw +Hy + h.

We have split the constant term in the second and fourth equation because
the lifting requires to divide them by y. We do not give the results of the
lifting. It is not difficult to conclude that the singularity is rigid. We find e.g.
two equations yH − xi+ h = 0 and xi+ h = 0. As h− xi is independent
of y we get by equating coefficients that H = 0 and from there h = i = 0.
Continuing we obtain that all variables have to vanish.

The second choice of the unfolding is almost the same, but the difference
is that the term iz occurs in the fourth equation in stead of the second one:
yz − xw +Hy + h + iz. This is an equation of the form f = yz − az − b.
There is no finite algorithm to divide a power series

∑
ciy

iz by f . The first
reduction gives c0z + b

∑
ciy

i−1 + a
∑

ciy
i−1z, containing again infinitely

many terms divisible by the initial form yz. To obtain the division one has
to rewrite

∑
ciy

iz as a power series in (y − a).
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4. Computations

4.1. Test case: Pinkham’s example

We compute the well-known versal deformation of the cone over the rational
normal curve of degree four [14]. We start from the determinantal equations(

y0 x1 x2 x3
x1 x2 x3 y4

)
.

Projection onto the (y0, y4)-plane realises the singularity as finite covering
of degree 4. This gives the additive realisation of the ring as

C{y0, y4}+ x1C{y0, y4}+ x2C{y0, y4}+ x3C{y0, y4}.

We compute standard bases with the global product ordering for the co-
ordinates (x2, x1, x3; y0, y4), where we take x2 first to get more symmetric
formulas. We write the ideal as

x21 − x2y0,

x1x2 − x3y0,

x22 − y0y4,

x2x3 − x1y4,

x23 − x2y4,

x1x3 − y0y4.

We compute the versal unfolding. This can be even done by hand. We use
the same indexing system for the unfolding parameters as for the variables.
The torus action on the singularity gives a bigrading, for which the variables
xi have weight (4 − i, i), and their index is the second component of the
weight. The variables ai are constants, the bi are power series in y0 and
ci, di depend on y0 and y4. The variables of power series type are indexed
using the weight of their constant term. To distinguish between variables of
the same weight we also use names like a′. So both a2 and a′2 are constants,
c′1 depends on y0 and y4. With this notation the versal unfolding becomes

x21 − x2y0 + a1x1 + c−1x3 + d2,

x22 − y0y4 + a3x1 + c1x3 + d4,

x23 − x2y4 + b5x1 + c3x3 + d6,

x1x2 − x3y0 + a2x1 + c0x3 + d3,

x2x3 − x1y4 + b4x1 + c2x3 + d5,
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x1x3 − y0y4 + b3x1 + a′2x2 + c′1x3 + d′4.

The initial forms all belong to C{x1, x2, x3}, so it is easy to lift the relations.
The normal form of the lifted relations FR does not contain terms quadratic
in the xi. The equations for the base space are the coefficients of the x1,
x2, x3 and 1. As there are 8 relations, we get 32 equations. The equations,
which are the constant terms of the lifted relations, are of degree three in
the unfolding variables, but they are consequences of the other ones. The
other equations are not linearly independent. We end up with 21 equations.
Six of them express the di in the other variables:

d6 + (y4 − b4)(a2 − a′2)− c2b4 + c1b5 + b3a3 = 0,

d5 − y4c1 + a3a
′
2 = 0,

d4 − 2y0b4 + c22 − c1c3 + c0b4 − c′1a3 + (c2 − a2)a
′
2 = 0,

d′4 − y0b4 + c2a
′
2 = 0,

d3 + (y0 − c0)(c3 − b3) + (c2 − 2a2)c
′
1 + c1a

′
2 = 0,

d2 − y0a2 − y0a
′
2 + c0a

′
2 = 0.

We have six equations in which y4 explicitly occurs:

(y4 − b4)(c3 − b3 + a3) + c2b5 − b5a2 + b4a3 = 0,(3)

(y4 − b4)(c2 + a2) + c1b5 + b3a3 = 0,(4)

(y4 − b4)(c1 − c′1 + a1)− c2b3 + b4c1 + b3a2 = 0,(5)

(y4 − b4)c
′
1 − (y0 − c0)b5 − a3a

′
2 = 0,(6)

y4c0 − y0b4 + c2a
′
2 − a2a

′
2 = 0,(7)

y4c−1 − y0b3 + c′1a
′
2 − a1a

′
2 = 0,(8)

three equations in which only y0 explicitly occurs:

(y0 − c0)(c3 − b3 + a3) + c2c
′
1 − c′1a2 + c0a3 = 0,

(y0 − c0)(c2 + a2) + c1c
′
1 + c−1a3 = 0,

(y0 − c0)(c1 − c′1 + a1)− c−1c2 + c0c1 + c−1a2 = 0,

and finally six equations where no deformation variable occurs linearly.
These last ones turn out to be implied by the other equations.
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We first determine T 1. For this we solve the linearised equations. By
taking the coefficients of the monomials in y4 and y0 we get infinitely many
equations. They can however be written in our notation. From equations
(3), (4) and (5) we find c3 − b3 + a3 = c2 + a2 = c1 − c′1 + a1 = 0. The
linearisation of equation (6) is y4c

′
1 − y0b5 = 0. As b5 only depends on y0

we conclude that c′1 = 0 and thereafter b5 = 0. Equations (7) and (8) give
c0 = c−1 = b4 = b3 = 0. Altogether we find that all b and c variables vanish
except the constant terms of c1, c2 and c3, for which we have ci + ai = 0.
The dimension of T 1 is four: variables are a1, a2, a3 and a′2.

Now we solve the equations themselves. We use equation (8) to elim-
inate c−1, then equation (3) to eliminate c3 and equation (6) for c′1. We
write the remaining three equations (4), (5) (with c′1 eliminated) and (7) in
matrix form:⎛⎝y4 − b4 b5 0

−b3 y4 b5
a′2 0 y4

⎞⎠⎛⎝c2 + a2
c1 + a1

c0

⎞⎠ =

⎛⎝ b5a1 − b3a3
y0b5 + b4a1 − 2b3a2 + a3a

′
2

y0b4 + 2a2a
′
2

⎞⎠ .

The right-hand side does not depend on y4. As the coefficient matrix
is of the form y4I +A, the argument of example 2 applies to show that
c2 + a2 = c1 + a1 = c0 = 0. From equations (8), (3) and (6) we then find
with the same argument that c′1 = c3 + b3 + a3 = c−1 = 0. Equation (6)
now reduces to −(y0 − c0)b5−a3a′2 = 0, from which we conclude that b5 = 0.
From equations (7), and (8) we get that b4 = b3 = 0. The equations now
reduce to the expected three quadratic equations a3a

′
2 = a2a

′
2 = a1a

′
2 = 0

for the base space. The other equations are then also satisfied. We also
determine the di.

We have finally obtained the versal deformation. It is

x21 − x2y0 + x1a1 + y0a2 + y0a
′
2,

x22 + x1a3 − x3a1 − y0y4 − a22 + a1a3,

x23 − x2y4 − x3a3 − y4a2 + y4a
′
2,

x2x1 + x1a2 − x3y0 + y0a3,

x2x3 − x1y4 − x3a2 − y4a1,

x1x3 + x2a
′
2 − y0y4,

over the base space given by a3a
′
2 = a2a

′
2 = a1a

′
2 = 0.
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Remark 5. The Artin component is given by a′2 = 0 and the total family
over it can be written as determinantal(

y0 x1 + a1 x2 + a2 x3
x1 x2 − a2 x3 − a3 y4

)
.

Usually one writes all deformation variables on either the top or bottom line,
but there is no reasonable choice of term ordering which gives an unfolding
inducing such a deformation.

Remark 6. The computation of T 1 shows that there are only deformations
of negative weight. As the used unfolding is quasi-homogeneous, we can
restrict to the subspace of negative weight to find the versal deformation.
This means that the bi and ci are independent of y4 and y0, so we have only
finitely many variables and we have only to solve the equations obtained
from equations (3) to (8) by taking coefficients of y4, y0 and 1. This is very
easy.

4.2. Hypercanonical cones

The next computation concerns again a homogeneous singularity, but this
time there are also deformations of positive weight. We look at cones over
non-rational curves. To have the simplest possible equations we consider
hyperelliptic curves, embedded with a multiple of the hyperelliptic involu-
tion.

So let C be a hyperelliptic curve and let K0 be the line bundle corre-
sponding to the hyperelliptic pencil. Then (g + l)K0 is ample for l ≥ 1 and
gives the lth transcanonical embedding [6]. In particular for l = 1 one gets
the hypercanonical embedding. The embedded curve lies on a scroll of type
(g + l, l − 1); the hypercanonical curve is the intersection of the projective
cone over the rational normal curve of degree g + 1 with a quadric hypersur-
face. Let X be the affine cone over a hypercanonical curve. For the actual
computation we will restrict ourselves to the case g = 3.

With the same notation as in the previous section we write the cone over
the normal curve as determinantal

(9)

(
y0 x1 . . . xg−1 xg
x1 x2 . . . xg yg+1

)
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and take as quadric

Q = z2 + p0y
2
0 + p1x1y0 + · · ·+ pgxgy0 + pg+1y0yg+1(10)

+ pg+2x1yg+1 + · · ·+ p2g+1xgyg+1 + p2g+2y
2
g+1.

The ring OX has the following additive realisation:

C{y0, yg+1}〈1, z, x1, x1z, . . . , xg, xgz〉.

The infinitesimal deformations and the obstruction space for these sin-
gularities are known. The dimension of T 1

X was computed by Drewes [5]:

dimT 1
X(l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, l = −2,
3g, l = −1,
4g − 3, l = 0,

g − 2, l = 1.

Of these are 2(2g − 2) deformations of the scroll, while the remaining ones
are obtained by perturbing Q. Each deformation (of degree −1) of the scroll
gives rise to two deformations of the hypercanonical cone, one of degree −1
given by exactly the same formula, and one of degree 0, obtained by mul-
tiplying with z. The perturbations of Q do not involve z. There is one of
degree −2, g + 2 of degree −1 (perturbing with an arbitrary linear term),
while the ones in degree 0 and 1 depend on the equation. For a generic equa-
tion one can perturb with x2y0, . . . , xg−1yg+1 and x2y0yg+1, . . . , xg−1y0yg+1

(this is the result of a computation for the special case z2 + y20 + y2g+1).

The dimension of T 2 is easily determined with the methods of [4]; in fact
the version of that paper contained in Jan Christophersen’s thesis contains
a discussion of these singularities. One has dimT 2

X(−2) = dimT 2
X(−1) =

g(g − 2) and the isomorphism between these two groups is multiplication
with z. There is a deformation to two singularities, both isomorphic to the
cone over the rational normal curve of degree g + 1 (simply take Q = t) and
in this deformation the dimension of T 2 is constant. This shows that the
number of equations for the base space is equal to the dimension of T 2.

We now apply Hauser’s algorithm. The versal unfolding of the system
of equations (9) and (10) can be obtained from the versal unfolding of
the equations for the cone over the rational normal curve, together with
perturbations of the quadric. In particular, for g = 3 we use the results of
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the previous subsection. Each unfolding parameter ai, . . . , di there doubles
into Ai + aiz, . . . , Di + diz. The quadric can be deformed independently of
the cone, so the unfolding is the same as the deformation given above. In
particular, there are only finitely many parameters in the unfolding of the
quadric.

The quadric is only involved in Koszul relations, so it suffices to lift the
determinantal relations. This is not so easy, as there are many variables. We
can use the fact that we have written our ring as a finite C{y0, yg+1}-module:
we consider y0 and yg+1 also as unfolding parameters, and make a coordinate
transformation on the parameter space. We write the perturbation of Q,
given by equation (10), as

z2 + s1x1 + · · ·+ sg+1xg+1 + S.

The term p0y
2
0 in Q is subsumed in S, whereas p1x1y0 contributes to s1x1.

We can regard this as deformation of the non-reduced singularity given by
the determinantal (9) and Q = z2. By introducing the weights wtxi =
wt y0 = wt yg+1 = 3, wt z = 2, wt si = 1, wtS = 4 and weights 3 and 1
for the unfolding parameters occurring in the determinantal equations we
get quasi-homogeneous equations with all perturbations of negative weight.
The lift of the relations is now easy. The equations for the base space are
obtained from the coefficients of 1, z, x1, x1z, . . . , xg, xgz.

We have done the computation in the case g = 3. One has to take all
unfolding parameters into account. It is not difficult to solve the linearised
equations. This gives indeed T 1

X as described above. But the equations
themselves are difficult to handle. To get a finite number of variables one
can restrict to the subspace of deformations of weight at most 0. In this case
this means forgetting the 1-dimensional T 1

X(1), which only corresponds to
an equisingular deformation. But this reduction is not sufficient. One could
expect that the versal deformation does not really depend on the moduli
of the curve. Therefore one can try to compute without the deformation
variables, which only change the pi in the quadric (10), and even use a
particular simple form for Q, namely z2 + y20 + y24. It turns out that many
variables can be eliminated, and one comes almost down to the dimension of
the relevant subspace of T 1

X , For one or two variables one finds a polynomial
equation with nontrivial linear part. The remaining equations contain very
many monomials. We have not succeeded in completing the computation.

Although the obtained equations were very complicated, we expected
a very simple result. Not only does the singularity deform into two cones
over the rational normal curve of degree 4, it also deforms into the 2-star
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singularity [13] (perturb Q with a general linear form); this singularity is
the double cover of the cone over the rational normal curve of degree four,
branched in a general hyperplane section. By the results of De Jong and
Van Straten [13] the base space of a rational quadruple point depends up
to a smooth factor only on one discrete invariant of the singularity. So the
expected result is that the hypercanonical cone with g = 3 has the same
base space as the 2-star singularity. The equations can be obtained by a
simple procedure from the three base space equations for the cone over the
rational normal curve. Recall that each variable ai doubled into Ai + aiz.
We put z2 + S = 0, and look at the coefficients of 1 and z (this is like taking
the real and imaginary parts of the product of two complex numbers). The
expected ideal of the base space is then generated by

A′
2a3 +A3a

′
2,

A3A
′
2 − a3a

′
2S,

A′
2a2 +A2a2,

A2A
′
2 − a2a

′
2S,

A′
2a1 +A1a2,

A1A
′
2 − a1a

′
2S.

These formulas are independent of the moduli pi. In fact, this should also
be the equations for the infinite dimensional base space of the nonreduced
singularity with Q = z2 (i.e., all pi = 0). As the equations do not involve
the si we can let the si be power series in the y-variables. But S has to
be independent of the space variables, so we also introduce (power series)
variables s0 and s4. We compute with the deformation of Q given by

z2 + x2s2 + x1s1 + x3s3 + y0s0 + y4s4 + S.

With the weights used above for the lifting (wtxi = wt y0 = wt y4 = 3,
wt z = 2, wt si = 1, wtS = 4 and weights 3 and 1 for the other variables)
we have now quasi-homogeneous equations with all variables of positive
weight. In contrast to the previous computation, where variables of weight 0
did not allow to control the degree of the polynomials involved, the degrees
are now fixed and we have less variables. There are now only 44 deformation
parameters.

We do not get the expected base equations, but rather complicated
expressions. As deterring example we write the last one:

2A1A
′
2 − 2a1a

′
2S + 2A1(a

′
2)

2
s2 + a21(a

′
2)

2
s1s2 − a1a

2
2a

′
2s

2
2 + a21a3a

′
2s

2
2

− 2a1(a
′
2)

3
s22 + 4A2(a

′
2)

2
s3 + 2a1(a

′
2)

3
s1s3 + 2a22(a

′
2)

2
s2s3

− 3a1a3(a
′
2)

2
s2s3 − 4a2(a

′
2)

3
s2s3 − 2a3(a

′
2)

3
s23 + 2A3(a

′
2)

2
s4
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− 2a22(a
′
2)

2
s1s4 + 2a1a3(a

′
2)

2
s1s4 − 2a3(a

′
2)

3
s2s4 = 0.

But one sees that it starts with the expected terms. The other equation
involving A1 is

A′
2a1 +A1a

′
2 − (a′)2(a1s2 + 2a2s3 − a3s4) = 0

and an easy coordinate transformation brings it in the desired form. After
a similar transformation for A2 and A3 one only needs to transform S to get
all equations right. Now we apply the transformation to the equations itself.
The change in the quadric can be undone with a coordinate transformation
in the space variables. The scrollar equations remain quite complicated. We
give only the quadric

z2 + x2s2 + x1s1 + x3s3 + S + y0s0 + y4s4

and the first of the scrollar equations:

x1
(
x1 + za1 +A1 + a′2(a1s2 + 2a2s3 − a3s4)

)
+ x3a1a

′
2s4

− (x2 − za2 − za′2 −A2 −A′
2 − a2a

′
2s2)y0 + 2

(
za2 −A2 + a22s2

)
(a′2)

2
s4.

In these formulas we still have to replace the si to reintroduce the higher
degree terms.

4.3. Multiplicity five

We did some computations for quasi-homogeneous singularities of multiplic-
ity five. By restricting to negative degrees one ensures that there are only
finitely many unfolding parameters. As their number tends nevertheless to
be large, computations have to be done with a computer algebra system,
like Singular [8]. The calculation itself requires only a few lines of Singu-
lar. In fact, creating the necessary ring is the most involved part. Given
a system of generators f of the ideal, one first computes a standard basis
for the jacobian module in the local ring. From this one determines the
unfolding F . One then computes a basis r for the relation module. One
then reduces the product Fr to normal form with the ideal f , and takes
coefficients of the monomials. We did this in two cases, where the result
was already known by other means.
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• For the cone over the rational curve of degree 5 the algorithm easily
gives the versal deformation in negative degrees. To understand the
result it is important that the unfolding parameters have names re-
flecting their degree under the torus action. A general formula, valid
for all multiplicities, was already given by Jürgen Arndt in his the-
sis [3] using different methods. He also first solves an unobstructed
problem and takes care of flatness afterwards.

• The monomial curve
(
t5, t6, t7, t8, t9

)
of minimal multiplicity 5 oc-

curs as hyperplane section of rational singularities. With a different
method the base space was determined in [17]. The computation with
Hauser’s algorithm is similar to that for the cone over the rational
normal curve. It leads to 68 equations of degree at most two for the
base space, in 67 variables. The dimension of T 1 is 19. One can elim-
inate 48 variables with 48 equations with non-zero linear part to get
20 equations in 19 variables, but this introduces terms of higher de-
gree, and the 20 equations involve many monomials more than the
original 67 equations. It is important to choose monomial orders and
the form of the unfolding in such a way that the perturbed equations of
lowest degree are as simple as possible. Then also the base equations
of lowest degree will be manageable.

We did not try the hypercanonical cone of genus 4. We note that it
deforms into a 2-star singularity of multiplicity 5. Such a rational singularity
has many smoothing components, cf. [19, Ch. 14], so the base equations are
complicated, and involve probably the perturbations of degree −1 of the
quadric. Therefore the trick of the case g = 3 does not work, and finding
the versal deformation with any method seems out of reach.

5. The Stanley–Reisner Ring of the Icosahedron

One way to study algebraic surfaces is to look at the boundary of their
moduli space. Of particular interest are highly singular surfaces, which
consist of a union of planes. They have a very easy local structure, but
can can be quite complicated globally. The combinatorics is captured in a
simplicial complex. In particular, the icosahedron occurs, if one considers
semistable degenerations of K3-surfaces. Looking for degenerations with
icosahedral symmetry [18] one can easily describe several possible special
fibres, but it is difficult to describe the total family. One of the simplest
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candidates is given by the Stanley–Reisner ring of the icosahedron. Here
we describe how one gets many equations for the deformation, again using
many additional variables.

We first recall how one can associate a projective scheme to a simplicial
complex [16]. So let Δ be a simplicial complex with set of vertices V =
{v1, . . . , vn}. A monomial on V is an element of NV . Each subset of V
determines a monomial on V by its characteristic function. The support of
a monomial M : V → N is the set suppM =

{
v ∈ V | M(v) 
= 0

}
. The

set ΣΔ of monomials whose support is not a face is an ideal, generated by
the monomials corresponding to minimal non-simplices. Consider now the
polynomial ring K[V ] over an algebraically closed field K. The monomials
in the ΣΔ generate the Stanley–Reisner ideal IΔ ⊂ K[V ]. The Stanley–
Reisner ring is AΔ = K[V ]/IΔ.

Consider now the icosahedron as simplicial complex. The associated
projective scheme X consists of 20 projective planes in P11 intersecting each
other just as the faces of the icosahedron. We use use variables x0, . . . , x11.
Unfortunately there does not seem to be a numbering system for the vertices
of the icosahedron, which makes the symmetries evident. We refer to the
figure for our numbering. The antipodal involution is xi �→ x11−i.

We look at infinitesimal deformations of the affine cone C(X) over our
projective scheme X, see also [18, § 5.9]. To find them one can apply
the results of [2] or compute directly. All deformations are unobstructed
(T 2

C(X) = 0). We have T 1
C(X)(ν) = 0 for ν < 0 and dimT 1

C(X)(0) = 30.
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The deformations of degree zero give embedded deformations of X. The
dimension of H0(ΘX) equals 11, which fits with the fact that X deforms to
smooth K3-surfaces (30− 11 = 19) of degree 20 and genus 11.

The Stanley–Reisner ideal is generated by 36 monomials, six correspond-
ing to pairs of opposite vertices, like x0x11, and 30 monomials like x0x6. The
infinitesimal deformations can be given by

(11) x0x6 + δ0,6x2x3, x0x11,

while the other equations can be obtained by using the group action. By
taking all deformation variables equal we get a icosahedral invariant defor-
mation. When adding higher order terms the equations become compli-
cated. Using the fact that the ideal is invariant under the full symmetry
group of the icosahedron the first equation can be written as

x0x6 + δ1x2x3

+ δ2
(
x20 + x26

)
+ δ3

(
x22 + x23

)
+ δ4

(
x25 + x211

)
+ δ5

(
x28 + x29

)
+ δ6

(
x21 + x24 + x27 + x210

)
+ δ7x8x9 + δ8(x1x7 + x4x10)

+ δ9(x0x2 + x0x3 + x2x6 + x3x6) + δ10(x0x5 + x6x11)

+ δ11(x0x1 + x0x4 + x6x7 + x6x10)

+ δ12(x1x5 + x4x5 + x7x11 + x10x11)

+ δ13(x1x2 + x2x7 + x3x4 + x3x10)

+ δ14(x5x8 + x5x9 + x11x8 + x11x9)

+ δ15(x1x8 + x7x8 + x4x9 + x10x9),

where all δi are power series in δ1. With a coordinate transformation one
can achieve that δ9 = 0. For the other type of equation we find three more
deformation variables.

To apply Hauser’s method we have to lift relations. This process is
not finite, but we can make it finite by adding extra equations, namely all
272 monomials of degree 3 lying in the ideal. The icosahedral action divides
them into six types. Each equation can be perturbed with 92 monomials.
Due to the symmetry 246 extra deformation variables suffice. An example
of a new equation and the corresponding relation to be lifted is(

x0x
2
6

)
· 1− (x0x6) · x6 = 0.
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The lift can be done in one step. We end up with many quadratic equations
in 246 + 17 variables. By solving the linear part of these equations we find
indeed the infinitesimal deformation (11) with all δij equal.

To do the computation we first made a list of all group elements, acting
by permutations of the coordinates. We then generated a sample perturbed
equation for each type. In process of lifting we let the group elements act
on these sample equations. The equations are the coefficients of the 92
monomials in the lifts of the different types of relations; again by symmetry
it suffices to look at a few samples.

The 92 monomials come in three orbits of the group: there are 12 third
powers like x20, 20 face monomials like x0x1x2 and 60 monomials supported
on the edges, like x20x1. The equations split correspondingly into three
sets, and each of the additional 246 variables occurs only in one set. We
already find a 1-dimensional infinitesimal deformation by only computing
the linearisation of the equations coming from the edge monomials. Further
simplification comes from the induced action of the antipodal involution on
the deformation variables. It suffices to look at the invariant equations.
One has also the action of the whole group. The invariant equations do
not give sufficiently many equations, but the complementary equations do.
After eliminating some variables, which occur only linearly, we are left with
102 inhomogeneous quadratic equations in 63 + 17 variables, each consisting
of circa 40 monomials. Although an enormous simplification from the
original system of equations, it is still too difficult to eliminate the additional
variables. We have the equations of the curve of icosahedral invariant K3-
surfaces, but we are unable to find its properties (what is its genus?).

6. Discussion

Compared with the usual procedure, Hauser’s algorithm requires less com-
putations, e.g., there is no need to compute the module T 2. All compu-
tations were easily set up. One quickly gets equations for the base space,
unfortunately in general in much more variables (infinitely many). The ex-
ample of the cone over the rational normal curve of degree four shows that
already in simple cases it is difficult to solve the infinite system of equations.
One obtains a finite number of equations in a finite number of variables by
restricting to deformations of negative weight of quasi-homogeneous singu-
larities. This is a severe restriction, but it is the same restriction one runs



Computing Versal Deformations of Singularities with Hauser’s Algorithm 227

into, if one wants to ensure a finite computation in the usual approach. Ac-
tually, in Hauser’s method one can allow deformations of weight zero and
still have polynomials. The risk is that the ensuing system of equations is
too complicated to be solved.

Only in a few cases we found explicit results. This is not a defect of
the algorithm, but reflects the fundamental difficulty in computing versal
deformations, that one ends up with a messy system of long equations,
which is too complicated to be of any use. In general one should refrain
from computing versal deformations. Only special equations, preferable
with much symmetry, are suitable for computation. One has to hope that
they are representative for the general case.
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Tree Singularities: Limits, Series and Stability

DUCO VAN STRATEN

A tree singularity is a surface singularity that consists of smooth components,
glued along smooth curves in the pattern of a tree. Such singularities naturally
occur as degenerations of certain rational surface singularities. To be more
precise, they can be considered as limits of certain series of rational surface
singularities with reduced fundamental cycle. We introduce a general class of
limits, construct series deformations for them and prove a stability theorem
stating that under the condition of finite dimensionality of T 2 the base space of a
semi-universal deformation for members high in the series coincides up to smooth
factor with the “base space of the limit”. The simplest tree singularities turn out
to have already a very rich deformation theory, that is related to problems in
plane geometry. From this relation, a very clear topological picture of the Milnor
fibre over the different components can be obtained.

Introduction

The phenomenon of series of isolated singularities has attracted the atten-
tion of many authors. It is obligatory to quote Arnol’d ([3], Vol. I, p. 243):

“Although series undoubtedly exist, it is not altogether clear what it
means.”

The very formulation is intended to be vague, and should maybe remind
us that mathematics is an experimental science, and only forms concepts
and definitions in the course of exploration and discovery. In any case, the
word series is used to denote a collection of singularities {Xi}i∈I , where I
is some partially ordered set, which “belong together in some sense”. The
archetypical examples are the Ak and Dk series of surface singularities:
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There are several ad hoc ways of saying that these singularities “belong
together”, but to quote Arnol’d again (p. 244):

“However a general definition of series of singularities is not known.
It is only clear that the series are associated with singularities of infinite
multiplicity (for example D ∼ x2y, T ∼ xyz), so that the hierarchy of series
reflects the hierarchy of non-isolated singularities.”

Most attempts have been to formalize certain aspects of the series phe-
nomenon. D. Siersma and R. Pellikaan started studying hypersurface sin-
gularities with one-dimensional singular locus ([51], [52], [36], [38], [39]).
These objects can be thought of as the limits of the simplest types of series
of isolated singularities. A precision of this limit idea can be found in the
notion of stem, due to D. Mond ([40]). In the thesis of R. Schrauwen [49]
the notion of series is developed for plane curves from a topological point of
view. It would be interesting to extend these ideas to isolated hypersurface
singularities of arbitrary dimension.

The series phenomenon was observed by Arnol’d for hypersurfaces, but
for non-hypersurfaces series also undoubtedly exist; for this one just has to
take a look at the tables of rational triple points obtained by M. Artin ([4])
or of the minimally elliptic singularities as compiled by H. Laufer ([30]).
A series here is characterized in terms of resolution graphs: the effect of
increasing the index of the series is that of the introduction of an extra
(−2)-curve in a chain of the resolution. In my thesis [58] the appropriate
limits for series of normal surface singularities were identified as the class of
weakly normal Cohen–Macaulay surface singularities. So a one-index series
of normal surface singularities is associated with a Cohen–Macaulay surface
germ X with an irreducible curve Σ as a singular locus, transverse to which
X has ordinary crossings (A1).
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Intimately related to the notions of a limit and its associated series are
the ideas of regularity and stability: certain properties of the series members
Xi do in fact not depend on i, at least for i big enough, and the limit X has
a corresponding property. Many examples of these phenomena are known.
For example, the Milnor number will grow linearly with the index [68], [39],
multiplicity and geometric genus will stay constant, and the monodromy
varies in a regular, predictable manner [53].

In the deformation theory of rational surface singularities one also en-
counters these phenomena. From the work of J. Arndt [2] on the base space
of the semi-universal deformation of cyclic quotient singularities, and the
work of T. de Jong and the author on rational quadruple points [23], the
idea emerged of stability of base spaces. This is intended to mean that in a
good series {Xi}i∈I something like the following should happen:

1. T 1
Xi

grows linearly with the index i in a series.

2. T 2
Xi

is constant (or stabilizes at a certain point).

3. “The” obstruction map Ob : T 1
Xi
−→ T 2

Xi
becomes independent of the

series deformations, and consequently

4. the base
Bi = Ob−1(0), Ob : T 1

Xi
−→ T 2

Xi

retains the same overall structure, in the sense that it gets multiplied
by a smooth factor.

Of course, this is rather inprecise, but maybe the following series of singu-
larities gives some feeling of what we are after.
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Resolution graph of a rational quadruple point

Apparently, these singularities form a four-index seriesXa,b,c,d of rational
quadruple points. From [21] it follows that one has for the base space:

Ba,b,c,d = B(n)× S,

where n = min(a, b, c, d), B(n) is a very specific space with n irreducible
components and S is some smooth space germ. So, up to a smooth factor,
the base space of Xa,b,c,d only depends on the shortest arm length n. This
n determines the core B(n) of the deformation space, but every time we
increase the shortest length, we pick up a new component! From [25], we
know that T 2 is also determined by the smallest arm length. So although
Xa,b,c,d clearly “is” a four-index series, stability of the base space can only
be seen by considering it as a (one-index series of a) three-index series of
singularities. The limit obtained by sending the three shortest arms to
infinity is a first example of what we call a tree singularity: a union of
smooth planes intersecting in smooth curves in the pattern of a tree. In this
case, there is a central plane with three smooth curves in it. The curves
all have mutual contact of order n, and to these curves three other smooth
planes are glued.
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Glueing of planes

The usefulness of the stability phenomenon is obvious: as a degenera-
tion, these limits have a simpler structure, and as a rule their deformation
theory will be easier to understand than that of a series member. But one
has to pay a price: as these limits no longer have isolated singularities,
they do not have a semi-universal deformation in the usual sense. Their
base spaces are in any sense infinite dimensional. This causes some incon-
veniences, but the work of Hauser [19] shows that a good theory can be
developed in the framework of Banach-analytic spaces. We take here an-
other approach: we will work consistently with the deformation functors
and smooth transformations between them.

The purpose of this paper is twofold. In the first place it is intended as
a heuristic guide to the understanding of [25]. By introducing the concept
of a tree singularity we hope to clarify some of the ideas behind [25], where
sometimes technicalities obscure simple and strong geometrical ideas.

In the second place we have a few theorems about series and the stability
phenomenon that deserve formulation and exposition. There are many open
ends here, and maybe the paper can interest others to prove more general
results in this direction.

The organization of the paper is as follows. in §1 we review the basic
theory of weakly normal Cohen–Macaulay surface germs. We will call such
object simply limits. In §2 we show that such limit deforms in a series
of normal surface singularities, whose resolution graphs can be described
explicitly. Most of these ideas can be found in [58]. We will use these
concepts as a sort of working definition, and in no way as the last word on
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these. In §3 we formulate and prove the basic stability results: the theorem
of the core (3.5), and the stability theorem (3.7). The projection method of
[22] is used, but clearly here is something very general going on, and a better
understanding is wanted for. In §4 we take a closer look at a particular class
of limits, the afore mentioned tree singularities. These tree singularities are
the limits of series of the simplest surface singularities imaginable: those
which are rational and have reduced fundamental cycle. A key notion in [25]
was that of a limit tree of a rational singularity with reduced fundamental
cycle. This is an abstraction to systematically distinguish between long and
short chains of (−2)-curves in the resolution graph. Another way of thinking
about a limit tree of a singularity is as an assignment of the singularity
as a series member of a limit. Things are not always straightforward, as
a singularity might very well be member of more than one series, with
very different limits, unlike the situation with Ak and Dk. For these tree
singularities, the deformation theory has a rather simple description. We
will give an interpretation of the module generators for T 1 and T 2 as found
in [25] in the case of tree singularities, and review the equations for the bases
spaces. The base spaces for even the simplest tree singularities and their
series members turn out to be extremely interesting, and can be interpreted
in terms of elementary plane geometry. In particular, the Milnor fibre of the
series members over the different components has a simple description in
terms of certain configurations of curves and points. In the paper [26] with
T. de Jong we have given a more systematic account of this picture method.
With this method one now gets some insight in the dazzling complexity of
deformation theory of rational singularities, and hopefully the reader will
be convinced after reading this paper that the answer to the question:

“How many smoothing components does this singularity have?”

probably in most cases will be:

“Many!”

(Unless you are somewhere at the beginning of the series . . . )

1. Limits and Tree Singularities

In this section we introduce a certain class of non-isolated surface singular-
ities, called limits. We review some basic properties and notions of these
singularities, and we will see in the next section how limits give rise to series
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of isolated singularities. Most of this can be found in [58]. Furthermore, we
introduce a particularly simple class of limits that we call tree singularities.

We will consider germs X of analytic spaces, or small contractible Stein
representatives thereof. Σ usually will denote the singular locus of X, and
p ∈ Σ the base point of the germ.

Notation 1.1. Let X be a reduced germ of an analytic space, Σ its singular
locus, OX its local ring, and KX its total quotient ring.

The normalization of X is denoted by

n : X̃ −→ X.

The weak normalization of X is denoted by

w : X̂ −→ X.

Recall that the semi-local rings of X̃ and X̂ are given by:

O
X̃

= {f ∈ KX | f|X−Σ ∈ OX−Σand f is bounded}

O
X̂

= {f ∈ O
X̃
| f extends continuously to X}

so one has the inclusions OX ⊂ OX̂
⊂ O

X̃
⊂ KX .

A space is called normal if n is an isomorphism, weakly normal if w is an
isomorphism. Normalization and weak normalization have obvious universal
properties. Furthermore, the weak normalization has the property that if
h : Y −→ X is an holomorphic homeomorphism, then w can be factorized
as w = h◦h for some h : X̂ −→ Y . This explains the usefulness of the weak
normalization and its alternative name maximalization. For more details we
refer to the standard text books like [18], [14].

Example 1.2. For each m there is exactly one weakly normal curve singu-
larity Y (m) of multiplicity m, to know the union of the m coordinate lines
Lp, p = 1, . . . ,m in Cm:

Y (m) = {(y1, . . . , ym) | yi · yj = 0, i 
= j}

= ∪mp=1{(y1, . . . , ym) | yi = 0, i 
= p}

= ∨mp=1Lp

Weakly normal surface singularities have a more complicated and inter-
esting structure. If we assume X also to be Cohen–Macaulay (note that
in dimension two normality implies Cohen–Macaulay, but weak normality
does not), then there is a simple geometrical description of weak normality.
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Definition 1.3. A Cohen–Macaulay surface germ is called a limit if it
satisfies one of the following three equivalent conditions:

1. X is weakly normal.

2. X − {p} is weakly normal.

3. For points q ∈ X − {p} we have the following analytic local normal
forms:

q ∈ X − Σ ; O(X,q) ≈ C{x1, x2}

q ∈ Σ− {p} ; O(X,q) ≈ C{x, y1, . . . , ym}/(yi · yj ; i 
= j)

Here, of course, m can depend on the choice of q.

Proof. The equivalence of 2. and 3. is clear in view of example (1.2).
Obviously 1. ⇒ 2. and 2. ⇒ 1. follows from the fact that Cohen–Macaulay
implies that all holomorphic functions on X − {p} extend to X.

The following gluing construction is very useful:

Proposition 1.4. Let be given maps of analytic spaces π : Σ̃ −→ Σ and
ι : Σ̃ −→ X̃. If π is finite and ι is a closed embedding, then the push-out
X in the category of analytic spaces exists, i.e. there is a diagram

Σ̃
ι−→ X̃

π ↓ ↓
Σ −→ X

with the obvious universal property. The map X̃ −→ X is also finite, and
the map Σ −→ X is also a closed embedding. Furthermore, X̃−Σ̃ ≈ X−Σ.

We say that X is obtained from X̃ by gluing the subspace Σ̃ to Σ. For
a proof, see [27] or [58], where in the local case explicit algebra generators
of OX are given.

The above construction is also “universal” in the sense that any finite,
generically 1-1 map X̃ −→ X between reduced spaces can be obtained that
way. To formulate this more precisely, we will fix the following notation
associated to such a map:
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Notation 1.5. Given a finite, generically 1-1 map X̃ −→ X between
reduced spaces, we define the conductor to be:

C = HomX(O
X̃
,OX) ⊂ OX .

Put OΣ = OX/C and O
Σ̃

= O
X̃
/C for the structure sheaves of the

corresponding sub spaces Σ̃ and Σ. It is now a tautology that we have a
diagram

0 −→ C −→ OX −→ OΣ −→ 0
≈↓ ↓ ↓

0 −→ C −→ O
X̃
−→ O

Σ̃
−→ 0

so X can be seen as obtained from X̃ by gluing Σ̃ to Σ.

This now leads to a characterization of limits in terms of the normaliza-
tion:

Proposition 1.6. LetX be a surface germ, n : X̃ −→ X the normalization.
Then X is a limit if and only if:

1. X̃ is purely two-dimensional.

2. Σ and Σ̃ are reduced curve germs (with structure as in 1.5).

3. H0
{0}(OΣ̃

/OΣ) = 0, i.e. O
Σ̃
/OΣ is OΣ-torsion free.

Proof. (See [58], (1.2.20)) If X is a limit, then X̃ will be a normal surface
(multi-) germ, and the curves Σ and Σ̃ will be reduced, by the local normal
forms 1.3 and the fact that C is defined as a Hom. Via a local cohomology
computation using the push-out diagram, the Cohen–Macaulayness of X
comes down to condition 3.
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Examples of Limits

Partition singularities 1.7.

Suppose that we have a germ X that sits in a push-out diagram as in
(1.4):

Σ̃ ↪→ X̃
↓ ↓
Σ ↪→ X

Suppose furthermore that X̃, Σ̃, and Σ are all smooth (multi-) germs. Hence,
Σ is a single smooth branch, and Σ̃, X̃ both consist of r smooth pieces,
where r is the number of irreducible components of X. The map Σ̃ ↪→ X̃
is the standard inclusion, and in appropriate coordinates the map Σ̃ −→ Σ
is given by ti �→ tm1

i . Hence, X is completely described by the partition of
m = Σr

i=1mi into r numbers. We call X a partition singularity, and write
X = X(π), where π = (m1,m2, . . . ,mr). This space has the following more
or less obvious properties:

mult
(
X(π)

)
= m, embdim

(
X(π)

)
= m+ 1, type

(
X(π)

)
= m− 1.

The singular locus of X(π) is the line Σ, and the generic transverse singu-
larity is the curve Y (m) of (1.2). The general hyperplane section of X(π)
is the partition curve of type π as defined in [11]. These partition singular-
ities are in some sense the building blocks from which all other limits are
constructed, see (2.3). Note also that X(1, 1) = A∞ and X(2) = D∞.

Projections 1.8. Consider a normal surface singularity X̃ ⊂ CN , and
consider a general linear projection L : CN −→ C3. Let X be the image
of X̃ in C3. Then X will have an ordinary double curve outside the special
point. As a hypersurface X is Cohen–Macaulay, hence X is a limit, and
moreover, the map l : X̃ −→ X can be identified with the normalization
map.

In the proof of theorem (3.5) we will use a slightly more general situation
in which X̃ is assumed to be a limit rather than a normal space. The
corresponding X will be a limit if and only if X̃ has only transverse A1

outside the special point.

Tree singularities 1.9. A tree singularity is a singularity X that satisfies
one of the following equivalent conditions:
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1. X is the total space of a δ-constant deformation of the curve Y (m)
of (1.2) to a curve with only nodes. Note that the curve Y (m) has
δ-invariant equal to m − 1, and only deforms into singularities Y (k),
with k ≤ m ([12]). Note that the general fibre will have m components
and m− 1 nodes, so the components have to intersect in the pattern
of a tree.

2. X has the curve Y (m) of (1.2) as a general hyperplane section and is
the union of m smooth irreducible components Xp, p = 1, . . . ,m and
Lp ⊂ Xp. Two such components Xp and Xq intersect in the point 0,
or in a smooth curve Σ{p,q}. The graph with vertices corresponding
to the components Xp and edges corresponding to the curves Σ{p,q}
is a tree T . So a tree singularity is obtained by gluing smooth planes
along smooth curves in the pattern of a tree.

Example 1.10. We illustrate these two different ways of looking at a tree
singularity with two pictures.

A δ-constant deformation of Y (4)
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The same tree singularity as a glueing

To describe a tree singularity completely, we not only need T , but also a
description of the curves Σpq in the planes Xp and Xq. This can be done as
follows. We choose coordinates x, y1, y2, . . . , ym, such that the hyperplane
section x = 0 describes Y (m) in the coordinates of (1.2). As the plane Xp

intersects x = 0 in the line Lp, the variables x, yp form a coordinate system
on Xp. As x = 0 is a general hyperplane section, all curves Σqp in the plane
Xp are transverse to Lp, and hence are described by an equation of the form:

Σqp : yp + aqp(x) = 0

for some aqp ∈ C{x}. Note that the intersection multiplicity of the curves
Σrp and Σqp is equal to:

i (Σrp,Σqp) = ordx
(
φ(r, q; p)

)
=: ρ(r, q; p)

where φ(r, q; p) := arp − aqp.

These difference functions φ (and the contact orders ρ) play a very im-
portant role in all sorts of computations and are to be considered as more
fundamental than the aqp. This leads to the following definition:

Definition 1.11. Let T be a tree and let us denote the set of vertices by
v(T ), the set of edges by e(T ), and the set of oriented edges by o(T ). The
set of corners c(T ) is the set of triples (r, q; p) such that {r, p} ∈ e(T ) and
{q, p} ∈ e(T ).

A decorated tree T = (T, φ) is a tree T , together with a system φ of
functions,

φ(r, q; p) ∈ xC{x} (r, q; p) ∈ c(T )
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anti-symmetric in the first two indices and satisfying the cocycle condition:

φ(s, r; p) + φ(r, q; p) + φ(q, s; p) = 0.

Furthermore, it is assumed that none of the φ’s is identically zero.

So every tree singularity X with a function x ∈ OX defining the general
hyperplane section, gives us a decorated tree T . Conversely, one has the
following:

Proposition 1.12. Let T = (T, φ) be a decorated tree. Consider the power
series ring R with variables x, zqp, where (p, q) ∈ o(T ). Denote by Cpq the
unique chain in T from p to q. Let X(T ) be defined by the following system
of equations:

zpqzrs = 0 for all (p, q), (r, s) ∈ o(T ) such that p, r ∈ Cqs

zrp − zqp = φ(r, q; p) for all corners (r, q; p) ∈ c(T ).

Then X(T ) is the tree singularity with decorated tree T . The irreducible
components of X(T ) are

Xt, t ∈ v(T ) defined by zsr = 0, s ∈ Ctr.

Proof. The hyperplane section of X(T ) is readily seen to be Y (m): modulo
x one has zrp = zqp, so the quadratic equations reduce to those of Y (m)
given in (1.2). From this it also follows that X(T ) is of dimension ≤ 2. Now
choose a splitting of the cocycle φ; i.e. we write

zqp = yp + aqp ; aqp ∈ C{x}.

Define Xt as the set where zsr = 0, s ∈ Ctr. Then on Xt one has coordinates
x, yt and the other yr are expressed via:

yr + asr = 0

where s ∈ Ctr is such that and {s, r} ∈ e(T ), so indeed Xt is a smooth
surface. Furthermore, for any t ∈ v(T ) and any given (p, q) and (r, s) ∈ o(T )
such that p and r ∈ Cqs we have that r ∈ Cts or p ∈ Ctq, because T is a
tree.
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The tree equations zpqzrs = 0, and a corner (u, v;w) ∈ c(T )

This means that for each t the quadratic equations zpqzrs is zero on Xt.
Hence Xt is a component of X(T ). If {p, q} ∈ e(T ) then Xp∩Xq is described
by the equation

yp + aqp = 0

in the plane Xp. As none of the φ’s is identically zero, all these curves
are distinct. So in each plane we find precisely the right curves to give as
incidence diagram the tree T . As the hyperplane section of X(T ) was the
reduced curve Y (m), this indeed proves that X(T ) is the total space of a
δ-constant deformation of Y (m).

Remark 1.13. There is another, in some sense simpler, but more redundant
form to write the equations for X(T ). We introduce for each pair p 
= q a
variable zpq and consider the equations:

zpqzqp = 0

zrp − zqp = φ(r, q; p).

Here we extend φ to all triples of distinct elements by putting: φ(r, q; p) :=
φ(s, t; p) if p ∈ Crq and where s and t are determined by the rule that
s ∈ Crp and {s, p} ∈ e(T ), etc. One puts φ(r, q; p) = 0 in case that
p /∈ Cqr. This has the effect that zqp = zrp for such triples. This second
form of the equations correspond exactly to the form used in [25], where
these were called the canonical equations. The canonical equations for a
rational surface singularity with reduced fundamental cycle read

zpqzqp = fpq

zrp − zqp = φ(r, q; p).
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The system of functions fpq, φ(r, q; p) has to satisfy a certain system of
compatibility equations (the “Rim-equations”), see [25]. A fundamental
fact is that the fpq for {p, q} ∈ e(T ) and φ(r, q; p) for (r, q; p) ∈ c(T )
uniquely determine the others, so a rational surface singularity with reduced
fundamental cycle is determined by data T ,f , where T is a decorated tree,
and f = {fpq ∈ C{x}, {p, q} ∈ e(T )} a system of functions. In this way,
one can see the tree singularity as a degeneration by putting all fpq for
{p, q} ∈ e(T ) equal to zero.

2. Series of Singularities

In this section we will see how to associate with each limit X a certain
(multi-) series of singularities. Such a series is constructed by deforming
the singularities of an improvement π : Y −→ X. We will describe how the
resolution graphs of the series members can be understood as root graphs
of the improvements.

As our approach to series is based on deformation theory, it might be
profitable for the reader to have a look at the appendix as well. As we
want to construct series by deforming X, we first take a look at the overall
structure of Def(X) on the infinitesimal level:

Proposition 2.1. Let X be a limit, and Σ its singular locus and q ∈ Σ−{0}
a point of multiplicity m. If m 
= 2 then

(1) T 1
(X,q) is a free O(Σ,q)-module of rank m.(m− 1).

(2) T 2
(X,q) is a free O(Σ,q)-module of rank (1/2).m.(m− 1).(m− 3).

(If m = 2 these ranks are 1 and 0, respectively.) In particular, T 1
X is finite

dimensional if and only if X is normal, and T 2
X is finite dimensional if and

only if the multiplicity of the transverse singularities does not exceed 3.

Proof. By the local normal form (1.3), this is really a statement about
the curve Y (m) of (1.2). For this the calculation of T 1 and T 2 is an easy
exercise. See also [17], and [11]. For more information about the semi-
universal deformation of this curve, see [57].
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Formally, the base space BX of a limit X is the fibre over 0 of a map
Ob : T 1

X −→ T 2
X . If T 2 is finite dimensional, then there always will be

deformations, because T 1
X has infinite dimension. To get some control over

these deformations it is useful to study deformations of an improvement
Y of X. A normal surface singularity X can be studied effectively using
a resolution, i.e. a proper map π : Y −→ X where Y is smooth, and
π∗(OY ) = OX . If X is a limit and has a curve Σ as singular locus, then one
can first normalize X to get X̃, and then resolve X̃ to Ỹ . The resulting map
π : Ỹ −→ X is still proper, but because we removed the singular curve, we
no longer have π∗(OỸ

) = OX . In order to preserve this property, we have to
“glue back” the identification of points that was lost during normalization.
The prize one has to pay is that the resulting space Y now has become
singular. These singularities however can be controlled. Improvements were
first considered by N. Shepherd-Barron [50]. For improvements of surfaces
with more general transverse singular loci, see [54].

Definition 2.2. Let X be a limit. π : Y −→ X is called an improvement
of X if it satisfies the following properties:

(1) π is proper.

(2) π : Y − E ≈ X − {p}, where E = π−1(p), the exceptional locus.

(3) Y has only partition singularities.

Proposition 2.3. Improvements exist.

Proof. Let n : X̃ −→ X be the normalization, Σ ∈ X and Σ̃ ∈ X̃ the
locus of the conductor in X and X̃ respectively. Now make an embedded
resolution of Σ̃ in X̃ to get a diagram

Δ̃ −→ Ỹ
↓ ↓
Σ̃ −→ X

where Δ̃ −→ Σ̃ can be identified with the normalization of Σ̃. By the
universal property of normalization, the composed map Δ̃ −→ Σ now lifts
to a map Δ̃ −→ Δ, where Δ −→ Σ is the normalization of Σ. Now we can
form a push-out diagram as in 1.4:

Δ̃ −→ Ỹ
↓ ↓
Δ −→ Y
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Clearly, from the definition (1.7) we see that Y has only partition singu-
larities. By the universal property of the push-out, we get an induced map
Y −→ X. It is easily checked that this indeed is an improvement.

Example 2.4.

Improvement of the tree singularity of (1.10)

With this notion of improvement one can now try to build up a theory
of limits along the same line as that exists for normal surface singularities.
So one can define a fundamental cycle, weakly rational singularities, weakly
elliptic singularities that all have properties very closely resembling those
in the case of normal singularities ([58]). Let us recall here the definition of
the geometric genus pg:

Definition 2.5. Let X be a limit, and π : Y −→ X an improvement. The
geometric genus pg of X is defined to be

pg(X) = dim
(
R1π∗(OY )

)
.

It is shown in [58], (2.5.28) that this pg is semi-continuous under defor-
mation. To compute it in examples, the following simple result is useful:

Proposition 2.6. If X̃ −→ X is a finite, generically 1-1 mapping of limits,
and Σ̃, Σ as in 1.5, then one has

pg(X) = pg(X̃) + δ
Σ̃
− δΣ.

(Application of this to the normalization n : X̃ −→ X shows that indeed
pg is independent of the chosen improvement.)
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Proof. This is straightforward, see [58], (2.3.5).

Definition 2.7. A limit X is called weakly rational (also called semi-
rational), if and only if pg = 0.

Corollary 2.8. Tree singularities are weakly rational.

Proof. Apply (2.6) inductively to the tree singularities obtained from the
given one by deleting one of its planes.

There are many other arguments for this fact, see [58], (4.4.6), [25], (1.4).

Definition 2.9. Let X be a limit, π : Y −→ X an improvement and
E = π−1(p) its exceptional locus. We can write E = ∪ri=1Ei with Ei

irreducible curves. By a cycle F on Y we mean any formal integral linear
combination of the Ei. We write

F =

r∑
i=1

niEi

Such a cycle determines a unique Weil-divisor (i.e. an in general non-reduced
subscheme of codimension one) of Y , that we will denote by the same
symbol F . The cycle F is called a Cartier-cycle, if the corresponding divisor
in fact is a Cartier divisor on Y .

Definition 2.10. Let X be a limit, and π : Y −→ X an improvement with
exceptional set E and let F ↪→ Y the subscheme determined by a cycle
on Y . Associated to this we consider the following functors.

(1) Def (Y ), the deformations of Y .

(2) Imp (Y ), the deformations of Y that blow down to deformations of X.
This is analogous to the functor Res of [6], or B, of [65].

(3) Def (F \ Y ), the deformations of Y for which F can be lifted as a
trivial family.

This last functor is analogous to functors TRZ considered in [65]. On Y
we have a finite set P of special points, P = Δ∩E, where Δ is the singular
locus of Y . We also define local functors:
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(1) Def (Y )P = Πp∈P Def
(
(Y, p)

)
(2) Def (F \ Y )P = Πp∈P Def

(
(F, p) \ (Y, p)

)
.

All these functors are connected and semi-homogeneous. In the case that
Y is smooth, these have a hull. In general, none of these will be smooth.

Proposition 2.11.

(1) The localization maps

Def (Y ) −→ Def (Y )P and Def (F \ Y ) −→ Def (F \ Y )P

are smooth.

(2) Def (Y )P is smooth if and only if X has finite dimensional T 2.

(3) There are inclusions Imp (Y ) ⊂ Def (Y ) and Def (F \ Y ) ⊂ Def (Y ).

If F is “big enough”, one has Def (F \ Y ) ⊂ Imp (Y ).

Proof. Statement (1) means in particular that local deformations can be
globalized, even if we want to lift the cycle F . From the local-to-global
spectral sequence and using the fact that H2(F) = 0 for any coherent sheaf
F on Y one gets:

H0(ΘY ) ≈ T 0(Y )

0 −→ H1(ΘY ) −→ T 1(Y ) −→ H0(T 1
Y ) −→ 0

T 2(Y ) ≈ H0(T 2
Y ).

From this it follows that the map Def (Y ) −→ Def (Y )P is surjective on
the level of tangent spaces, and injective (even isomorphism) on obstruction
spaces. Hence the transformation is smooth. In exactly the same way one
gets for F \ Y :

H0
(
ΘY (−F )

)
≈ T 0(F \ Y )

0 −→ H1
(
ΘY (−F )

)
−→ T 1(F \ Y ) −→ H0(T 1

F\Y ) −→ O

T 2(F \ Y ) ≈ H0(T 2
F\Y )

and the same conclusion.
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Statement (2) follows directly from (2.1): T 2
X finite dimensional means

that X has transverse Y (2) or Y (3). Hence on the improvement we find
the partitiion singularities X(1, 1), X(2), X(1, 1, 1), X(2, 1) or X(3). The
first two are hypersurfaces, the other three Cohen–Macaulay of codimension
two. So in all these cases we have T 2

Y = 0, hence Def (Y ) is smooth. As to
statement (3) we remark that the inclusion Def (F \ Y ) ⊂ Def (Y ) is due
to the fact that the embedding of F in Y is unique, even infinitesimally,
as a consequence of the negativity of E. That for big F , we get in fact
Def (F \ Y ) ⊂ Imp (Y ) follows from the fact that a deformation Y −→ S of
Y over S blows down to a deformation ofX if and only ifH1(OYs) is constant
for all s ∈ S (see [42], [62]). We say that F is big enough if the canonical
surjection H1(OY ) −→ H1(OF ) is an isomorphism. (As pg = H1(OY ) is
finite dimensional it follows that there are such F .)

Remark 2.12. The most important case one encounters is of course the
case that the limit has only transverse double points, so we have only
X(1, 1) = A∞ and X(2) = D∞ singularities on the improvement and
so Def (Y ) and Def (F \ Y ) are smooth. If furthermore the singularity is
weakly rational, as is the case for our tree singularities, then one also has
Def (Y ) = Imp (Y ).

In [58] a series of determinal deformations of the partition singularities
X(π) was constructed. To be more precise, we have:

Proposition 2.13. LetX(π), π = (π1, π2, . . . , πr) be a partition singularity.
Let (ν1, ν2, . . . , νr), νi ≥ 0, a collection of r numbers. Then there exists a
deformation

φ : X (π; ν) −→ Λπ := Cr

such that for generic λ ∈ Λπ the fibre Xλ(π, ν) := φ−1(λ) has the following
properties:

(1) Xλ(π, ν) has an isolated singularity at the origin.

(2) The resolution graph of the minimal resolution of Xλ(π, ν) has the
following structure:

(a) All the curves are isomorphic to P1.

(b) There is a central curve C, with (C.C) = −m.
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(c) There are r chains of curves

Ci,1, C1,2, . . . , Ci,pi

where i = 1, 2, . . . , r and pi = πi + νi − 1.

(d) (C.Ci,πi) = 1.

(3) The subscheme Fn, defined by xn = 0 lifts trivially over Λπ if

n ≤
r∑

i=1

(νi + 1).

Proof. This is essentially [58], (1.3.12). It is obtained by perturbing a
matrix defining X(π) in a very specific way. From this representation it is
possible to read off all the information.

Remark 2.14. In the case that one or more of the νi is equal to 0, the fibre
Xλ(π, ν) has in general more singularities. For example, Xλ(π, 0) has as
singularities the (−m)-singularity, together with Aπi−1-singularities. This
all fits with the description under (2.13) 2). Note also the special classes

X(1, 1; a, b) = Aa+b+1 and X(2; a) = Da+2.

So indeed these series associated to the partition singularities are a gener-
alization of the A and D series. But from the construction as a partition
singularity we unfortunately get A as a two-index series. We will strictly
hold to the following equations for the A and the D series: Ak : yz−xk+1

and Dk : z2 − x.(y2 − xk−2), and so D3 ≈ A3 and the deformation of A∞
to A−1 represents the generator of the T 1, etc.

Definition 2.15. Let X be a limit, and π : Y −→ X an improvement and
F a sufficiently big divisor.

Roots: In [65] the notion of root for a normal surface singularity was
introduced. It is an attempt to characterize those cycles on a resolution that
can arise as specialisation of a connected smooth curve. Analogueously we
call a Cartier cycle R ⊂ Y a root iff χ(OR) ≤ 1. Essentially by [65], lemma
(1.2), the set of roots is always finite. A root is called indecomposable
if it is not the sum of two other roots. In particular, each exceptional
curve, not passing through any of the special points P = E ∩ Δ, is an
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indecomposable root. The diagram with vertices the indecomposable roots,
and with edges corresponding to intersections of roots (computed as cycles
on the normalization) we call the root diagram RD(Y ). Note that if Y is a
resolution, then RD(Y ) is nothing but the dual resolution graph.

Modifications: Let s ∈ P be a special point. Then (Y, s) ≈
(
X(π), 0

)
for some π = π(s) =

(
π1(s), . . . , πr(s)(s)

)
. In particular, the normalization

of Y at s consists of r(s) smooth planes. For each s ∈ P and i = 1, 2, . . . , r(s)
there are elementary modifications

Yεi(s) −→ Y

by blowing up in the i-th piece of the normalization of (Y, s). Note that on
Yεi(s) there is a unique point s̃ over s at which (Yεi(s), s̃) ≈ (X

(
π(s)

)
, 0).

In order to simplify notations we will identify the sets of special points
on Y and Yεi(s). In this way we can iterate or compose these elementary
transformations. The semi-group spanned by them we denote by

N (Y ) =
⊕
s∈P

r(s)⊕
i=1

N.εi(s).

If ν =
(
ν(s)

)
s∈P ∈ N (Y ), then we denote the space obtained by this

composition of elementary transformations by Yν −→ Y . Finally, for a
Cartier cycle F on Y we put

N (Y, F ) =

{
ν ∈ N (Y )

∣∣∣ r(s)∑
i=1

(νi(s) + 1) ≥ coeff (F, s)

}
.

(Here coeff (F, s) is the coefficient of Ei in F for any Ei that contains s.)

A particular transformation is the blow-up b : Ỹ −→ Y of Y at s. One
can check that on Ỹ there is again a partition singularity of type π(s) at
some point s̃ lying over s, together with r(s) singularities, of type Aπi(s)−1.
Let μ : Yμ −→ Y be the space obtained from Y by first blowing up at all
the special points, and then resolve the resulting A-singularities. The use
of this blow-up is that on Yμ there will be an unique indecomposable root
R(s̃) passing through s̃. For details we refer to [58].

Series Deformations: For each ν ∈ N (Y, F ) we also get an element
ξ(ν) ∈ Def (Y )P (Λ) by putting together the local deformations of (2.13)

ξs
(
ν(s)

)
: X
(
π(s), ν(s)

)
−→ Λπ(s)
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where ν =
(
ν(s)

)
s∈P and Λ = Πs∈PΛπ(s).

All this was set up in such a way that the following theorem is true:

Theorem on Series 2.16. Let Y −→ X be an improvement of a limit,
and F a sufficiently big divisor with suppF = E. For each ν ∈ N (Y, F )
there is a deformation

X (ν) −→ Λ

of X, such that for generic λ ∈ Λ the fibre Xλ(ν) has an isolated singularity
with resolution graph

Γ
(
Xλ(ν)

)
= RD

(
(Yλ)ν

)
.

We call the singularities Xλ(ν) the members of the series.

Proof. The local deformations ξ(ν) can be lifted to global deformations
of Y , fixing F , by (2.11). Because F is big enough, this deformation can
be blown down to give a deformation of X. At first, this is only a formal
deformation, over the formal completion of Λ. But by an application of the
Approximation Theorem (see appendix) we can get an honest deformation
over a neighborhood of zero in Λ that approximates arbitrarily good the
given formal one. Because the support of F is assumed to be the full
exceptional divisor, all the irreducible components Ei lift. Furthermore,
locally around each point s ∈ P we have a standard situation, producing a
resolution graph as in (2.13). It is an exercise to verify that the new roots on
Yμ are the curves of the A-singularities, together with the indecomposable
root R(s) mentioned in (2.15). This root lifts to the central curve of the
local resolution.

Remark 2.17. This is a rather weak theorem. We do not claim that
any singularity can be degenerated to a limit, nor do we claim that all
singularities with a given graph do occur as fibre Xλ(ν). Although this is
rather plausible, it is much harder to prove. Our statement is really not
much more than a statement about graphs, stated in a slightly fancy way.
Note also that the construction depends on the improvement Y −→ X in
the following way: if we blow up further to Yν , ν ∈ N (Y ), then one gets as
series members the Xλ(ν + μ), μ ∈ N (Y, F ).
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Examples 2.18. By far the most important cases are where we have only
A∞ and D∞ singularities on the improvement. We illustrate the theorem
with two pictures, that hopefully will clearify everything.

Deformation of A∞ to A1 on improvement

Deformation of D∞ to D2 on improvement

We will draw improvement graphs using an obvious extension of the
usual rules for drawing a resolution graph: the presence of anA∞-singularity
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is indicated by a double bar. A D∞ is indicated by a double barred arrow.
We give two examples to illustrate (2.16):

Series formation on the A-case

Series formation on the D-case

The vertical maps between the graphs are elementary modifications,
obtained by blowing up the special point of the improvement. The curves
enclosed by the dotted line make up the unique indecomposable root that
contains the special point. The root diagrams at the right hand side are the
resolution graphs of the series deformation. Blowing up further brings us
to higher members of the series.

Example 2.19. The series members belonging to the improvement of (2.4)
have as resolution graphs:
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Series coming out of the improvement (2.4)

The construction of (2.16) lets the series begin with arm lengths equal
to one, but clearly we also could let the series start one step earlier, by
deforming on the improvement to A0. It looks as follows:

Deforming to A0: the (−4)

We will not make fuzz about the beginning of a series. Does the Ak-
series start with k = 1, k = 0, or k = −1?

In order to link up these series deformations with the equations of X we
consider one more functor.

Definition 2.20. Let X −→ S be a deformation of X over S, with a section
σ : S −→ X . Let mσ be the ideal of σ(S) ⊂ X . The subscheme Jn

σ (X )
defined by the ideal mn

σ we call the “n-jet of X along the section σ”. We let
Secn (X)(S) := deformations of X over S with section, such that the n-jet
of X along the section is deformed trivially over S, modulo isomorphism.
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There is no difficulty in showing that this functor is connected and semi-
homogeneous (see Appendix).

Proposition 2.21. Let ρ : Y −→ X be an improvement of a limit X.
For all n there exists an F big enough such that the blow-down map
Def (F \ Y ) −→ Def (X) factors over Secn(X) −→ Def (X).

Proof. We assume that the pull-back of the maximal ideal ρ∗(mX) is
invertible, say = OY (−Z). Now take m ≥ n such that mm

X annihilates
the sky-scraper sheaf R1ρ∗(OX), and put F = m.Z. This F does the job.

3. Stability

Before formulating the stability theorem for series deformations, let us
quickly discuss a situation in which the tangent-cohomological aspect of
the stability phenomenon can be readily understood.

Consider a limit X, and choose a slicing for it. By slicing, we mean
that we consider X together with a non-constant map ρ : X −→ S, where
S is a germ of a smooth curve. So X is sliced into curves Ys = ρ−1(s), if
appropriate representatives for X and S are chosen. We let Y = ρ−1(0).
Now consider a one-parameter smoothing of X:

X −→ X
↓ π ↓
{0} −→ T

By lifting the function ρ to X we get a combined two-parameter defor-
mation φ : X −→ S × T of the curve singularity Y .

Lemma 3.1. If dim(T 2
X) <∞, then T k

X/S×T (k = 2, 3) are artinian OS×T -
modules.

Proof. We will use general properties of the cotangent complex, for which
we refer to [20] and in particular to [11] for a nice summary of the most
important facts. In general, the support of the T k

X/S×T as OS×T -modules
is contained in the discriminant D of the map X −→ S × T , which in our
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case consists of the axis S×{0}, possibly together with some other curve C.
For p ∈ C − {0} the fibre Y(s,t) lies as a hypersurface in the smooth surface

Xt = π−1(t), so we see that for k ≥ 2 the module T k
X/S×T is supported

on S × {0}. As the limit X is assumed to have a finite T 2, it follows
that X has only double or triple points transverse to Σ, and from this it
follows that T 2

X/S×T is concentrated over {0}, hence is artinian. But also

supp (T 3
X/S×T ) = {0}, because transverse to the S axis in S × T we have a

smoothing of the curve singularity Y (3). As the support of T 3 of the family
is concentrated over the S-axis, and vanish at the general point because
T 2
Y (3) vanishes: the usual argument.

Now consider the maps:

ιn : S −→ S × T ; s �−→
(
s, λ.sn+1

)
, λ 
= 0

and let the image Im (ιn) be defined by tn ∈ OS×T . We can pull-back the
family φ : X −→ S × T over the maps ιn to get sliced surfaces Xn −→ S.
These Xn −→ S can be seen as slicings of a series of isolated surface
singularities. If we let run λ over a smooth curve germ Λ, we obtain a
one parameter deformations Xn −→ Λ of X with fibres the Xn. We have
that Xn −→ Λ ∈ Secn(X)(Λ), because the equations of X and Xn are the
same up to order n as they are obtained by pulling back via maps that are
the same up to order n.

We now can see that the obstruction spaces of the Xn stabilize in the
following sense:

Proposition 3.2.

lim
n→∞ dim

(
T 2
Xn

)
= dim

(
T 2
X

)
.

Proof. There exists a long exact sequence

. . . −→ T 1
X/S×T

tn·−→ T 1
X/S×T −→ T 1

Xn/S
−→ T 2

X/S×T

tn·−→ T 2
X/S×T −→ T 2

Xn/S
. . . .

Here tn ∈ OS×T is as before. We have seen that T k
X/S×T for k = 2, 3

are artinian OS×T -modules. As a consequence, we see that Ker (tn.) and
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Coker (tn.), where tn. : T k
X/S×T −→ T k

X/S×T stabilize for n � 0. By
comparing with the exact sequence

. . . −→ T 1
X/S×T

t·−→ T 1
X/S×T −→ T 1

X/S −→ T 2
X/S×T

t·−→ T 2
X/S×T −→ T 2

X/S . . .

we can conclude
lim
n→∞ dim (T 2

Xn/S) = dim (T 2
X/S).

Because S is smooth one has T k
X/S = T k

X for k ≥ 2. (c. f. [11], (1.3.1).)

(In the case thatX has only transverse double points, the same argument
shows that in fact all the T k

Xn
for k ≥ 2 will stabilize.)

Remark 3.3. The above arguments show that “there are series such that
high in the series T 2 (and even T k) stabilizes, if the T 2 of the limit is
finite”. This is much weaker than the statement that this will happen for all
deformations in Secn(X), for n� 0. Although this sounds rather probable,
I have been unable to establish this. As it would be quite useful in practice,
it seems worth trying to prove this in general.

As T 2
X stabilizes, is seems natural to expect that the equations of the

base space also will stabilize. These stable equations then would be the
equations for the base space of the limit, and these equations should not
depend on the coordinates corresponding to the series deformations. So,
although infinite dimensional, the base space of a limit should have some
sort of finite dimensional core. This in fact we can prove, if we define the
core in the following way:

Definition 3.4. Two semi-homogeneous functors F and G are called “the
same up to a smooth factor” if there exists a semi-homogeneous functor H
and smooth natural transformation H −→ F and H −→ G. Being the same
up to a smooth factor clearly is an equivalence relation.

A semi-homogeneous functor F is said to have a core iff it is the same
up to a smooth factor as a (pro)-representable one. The (equivalence class)
of this pro-representable functor we call the core Core (F ) of F .

Theorem of the Core 3.5. Let X be a limit with dim (T 2
X) < ∞. then

Def (X) has a core.
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Proof. We choose an embedding of X into some CN and a linear projection
L : CN −→ C3. Denote L|X by ν and put Y = ν(X) ⊂ C3. For a generic

choice of L the resulting map X
ν−→ Y will be generically 1 − 1. Let C be

the conductor of the map ν, and let Σ̃ ⊂ Ỹ and Σ ⊂ Y be the locus of the
conductor in X, respectively Y . So we have a diagram:

Σ̃ ⊂ X ⊂ CN

↓ ↓ ν ↓ L
Σ ⊂ Y ⊂ C3

We put the obvious structure sheaves on Σ̃ and Σ (c.f. (1.5)): O
Σ̃
= OX/C

and OΣ = OY /C. Now, Σ will consist of two parts of different geometric
origin:

(1) Σ1: the image of the double points of the map ν. This will be an
ordinary double curve on Y , and hence Σ1 is reduced.

(2) Σ2: the image of the curve along which X has points of multiplicity
three. Transverse to such a point Y has aD4-singularity, as it is locally
the projection of the space curve Y (3) to the plane. A calculation
shows that the conductor structure on Σ2 is also reduced. Note this
is no longer the case if we project Y (m), m ≥ 4, so it is here that the
finiteness of T 2

X comes in. (The curve along which X has multiplicity
two maps to an ordinary double curve of Y , so there is no conductor
coming from this part.)

In [21] and [22] the functor of admissible deformations Def (Σ, Y ) of the pair
Σ ↪→ Y was studied. Loosely speaking, Def (Σ, Y ) consists of deformations
of Σ and Y , such that Σ stays inside the singular locus over the deformation.
A fundamental result of [22] was that there is a natural equivalence of
functors

Def
(
X −→ C3

)
≈ Def (Σ, Y ).

Here Def
(
X −→ C3

)
is the functor of deformations of the diagram

X −→ C3.

This functor equivalence follows essentially from

HomY (C, C) ≈ HomY (C,OY ) ≈ OX
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(see [22]), which means that we can recover the OY -module structure and
the ring structure of OX from the inclusion C ↪→ OY . Note that essentially
because C3 is a smooth space, the forgetful transformation

Def
(
X −→ C3

)
−→ Def (X)

is smooth: there are no obstructions to lifting the three coordinate functions,
defining the map to C3, along with X.

Also, in [21], the notion of I2-equivalence on the functor Def (Σ, Y ) was
introduced. If Σ is defined in C3 by an ideal I, and Y is defined by a function
f , then two deformations over S described by (IS , fS) and (IS , gS) are called
I2-equivalent if fS − gS ∈ I2S . I2-equivalence is an admissible equivalence
relation in the sense of [10], which means that the quotient map

Def (Σ, Y ) −→M(Σ, Y )

is smooth, and the functor M(Σ, Y ) of I2-equivalence classes of admissible
deformations is semi-homogeneous. Combining these things, we arrive at a
diagram

Def
(
X −→ C3

)
≈ Def (Σ, Y )

↓ ↓
Def (X) M(Σ, Y )

The tangent space M1(Σ, Y ) = M(Σ, Y )
(
C[ε]
)
sits in an exact sequence

(see [21])

0 −→ I(2)/
(
I2, θI(f)

)
−→M1(Σ, Y ) −→ T 1

Σ −→ · · · .

Here I(2) is the second symbolic power of I, and θI(f) is the ideal generated
by θ(f), where θ ∈ ΘI := {θ|θ(I) ⊂ I}. Because Σ is a reduced curve germ,
we have

dim
(
T 1
Σ

)
≤ ∞

and

dim (I(2)/I2) ≤ ∞,

so it follows that dim
(
M1(Σ, Y )

)
≤ ∞. It now follows from Schlessingers

theorem that the functor M(Σ, Y ) has a hull. In other words, Def (X) has
a core.



260 D. van Straten

Remark 3.6.

(1) We proved the theorem only for surfaces, but clearly something very
general is going on. It is natural to expect the theorem to be true for
all analytic germs (X, p) such that for some representative X of (X, p)
and all q ∈ X −{p} one has that Def

(
(X, q)

)
is smooth. It would be

very interesting to prove this in general.

(2) Intuitively it is “clear” that the deformations “high in the series”
should give rise to a trivial factor in the base space. One might be
tempted to argue along the following lines:

By naturality of the obstruction element of ob(ξ, ξ′) ∈ T 2 for ξ, ξ′ ∈ T 1

we see that ob(a.ξ, ξ′) = 0 for all a ∈ Ann (T 2). So to first order, the
subspace Ann (T 2).T 1 ⊂ T 1 is not obstructed against anything. But
in general there will be higher order obstructions, or higher order
Massey-products (see [29]) non-vanishing, and it is easy enough to
give examples where this really happens. Theorem (3.7) states some-
how that there is an end to all these Massey-products. It would be
interesting to prove the theorem in such a set-up.

The next theorem tells us that this core is really the base space of any
series member high in the series.

Stability Theorem 3.7. Let X be a limit with finite dimensional T 2.
Then there is a number n0 such that for any n ≥ n0 and any fibre X ′ = Xs

of a deformation X −→ S ∈ Secn(S) one has:

Core (X) = Core (X ′).

Proof. The idea of the proof is the same as that of (3.5), but for simplicity
we assume that X has only transverse A1 singularities. So we again let
X ⊂ CN and let L : CN −→ C3 be a generic linear projection, and we get
the diagram

Σ̃ ⊂ X ⊂ CN

↓ ↓ ↓
Σ ⊂ Y ⊂ C3

Let J ⊂ O(CN ,0) =: ON be the ideal of X, so the ideal of Y is

J ∩ O(C3,0) = (f) ⊂ O3 := O(C3,0).
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Let l : C3 −→ C be a generic linear function, and let P be the polar
curve, that is, the critical locus of the map (f, l) : C3 −→ C2. So, P is
defined by two generic partials of f , say P = V (φ); φ = (∂f/∂x, ∂f/∂y).
Hence, P is an isolated complete intersection curve singularity. Let I ⊂ O3

be the ideal of Σ. Clearly we have the inclusion Σ ⊂ P . Let us put
mk := m(C,0) ⊂ OCk,0).

Now, because Σ is reduced, there is an integer p such that

I(2) ∩mp
3 ⊂ I2.

Because P is an isolated complete intersection singularity, it is finitely
determined, so we can find an integer q such that

∀φ′ with jq(φ) = jq(φ′) ∃h :
(
C3, 0

)
−→

(
C3, 0

)
such that V (φ ◦ h) = V (φ′).

Because the map X −→ Y is finite, it follows that for all k there is a
n = n(k) ≥ k such that (

f,mk
3

)
⊃
(
J ,mn

N

)
∩ O3.

Finally, we let

n0 := n(k); k = max(p, q + 1).

Consider a fibre X ′ of a deformation ξ ∈ Secn(X)(S). By projection this
family X −→ S we get families YS −→ S, ΣS −→ S and PS −→ S. Now
because n ≥ n0, we have that for each s ∈ S(

fs,m
k
3

)
⊃
(
Js,mn

N

)
∩ O3 =

(
J ,mn

N

)
∩ O3 ⊃

(
f,mn

3

)
.

So one has: f − fs ∈mk
3 ⊂mq+1

3 . From this it follows that jq(P ) = jq(Ps),
and hence, P and Ps are isomorphic. We can find a (family of) coordinate
transformations, trivializing this family PS −→ S. Because ΣS −→ S is
a sub-curve (over S) of PS −→ S, it follows that ΣS −→ S also can be
assumed to be the trivial family. Let I be the ideal of ΣS in C3 × S. We
then have

f − fs ∈mp
3 ∩ I(2) ⊂ I2

because p ≤ n. Hence, for each s ∈ S we have that Ys is I
2-equivalent to Y .

Hence Y and Ys have the same core.
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Remark 3.8. That we really need the family to connect X and X ′ seems
to be a technicality that could be removed with some more care. Also,
it is clear from the above argument that one can directly compare the
base spaces of fibres Xs and Xs′ without using the core of the limit as
intermediary. Remark also that the result as formulated above is not very
practical, because it does not give a hint as to the value of n0 in terms of X.
It would be very useful to have a more effective version of the theorem.

4. Tree Singularities

In this section we will illustrate some of the results of chapter 2 and chap-
ter 3 with the example of the tree singularities. We discuss the geometric
content of the generators for T 1 and T 2 that were found in [25]. Further-
more, we describe the simplest class of tree singularities in more detail, to
know those which have a simple star as tree. The deformation theory of
these singularities leads to the study of configurations of smooth curves in
the plane. It offers some insight in the complexity of deformation theory of
rational surface singularities. The resulting picture method for understand-
ing the component structure is the subject of a separate paper together with
T. de Jong ([26]).

Improvements of Tree Singularities

As in chapter 1, we let v(T ), e(T ), o(T ) and c(T ) be the sets of vertices,
edges, oriented edges and corners of the tree T . The edges correspond to
the irreducible components of the double curve of X, the oriented edges to
their inverse images on the normalization. We will use

Σpq ⊂ Xq and Σqp ⊂ Xp

to denote these curves mapping to Σ{p,q}, {p, q} ∈ e(T ) in X. Tree singular-
ities have improvements that are easy to understand: take any embedded
resolution of ∪Σqp ⊂ Xp, so we get a diagram

Δqp ↪→ Yp
↓ ↓

Σqp ↪→ Xp
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An improvement is obtained by gluing back:∐
(qp)∈◦(T )Δqp ↪→ ∐

p∈v(T ) Yp

↓ ↓∐
{p,q}∈e(T )Δ{p,q} ↪→ Y

The corresponding improvement graph can be characterized by a certain
function on the set o(T ) of oriented edges

λ(q, p) = length of chain from Lp to Δqp.

We recall here that Lp is the line given by x = 0 in the plane Xp, and is
transverse the all the other curves.

The series deformations correspond to deforming each of the double
curves of the improvement, as explained in chapter 2. When we deform
around Δ{p,q}, toAν(p,q) we get a chain between Lp and Lq of length equal to

l(p, q) = λ(p, q) + ν(p, q) + λ(q, p).

There are two more or less canonical improvements to consider:

M : Take for Xp −→ Yp the minimal good embedded resolution of
∪Σqp ⊂ Xp. We thus arrive at the minimal good improvement Y −→ X.
In this case one has:

λ(q, p) = max
r

(
ρ(r, q; p)

)
.

B: Blow-up points of X to arrive at the blow-up model. In this case we
have:

λ(p, q) = max
r,s

(
ρ(r, q; p), ρ(s, p; q)

)
= λ(q, p).

We now come to the relation between the notion of limit tree of [25] of a
rational surface singularity with reduced fundamental cycle, and the series
of deformations of tree singularities.

Proposition 4.1. Let X = X(T ) be a tree singularity of multiplicity m,
and let Y −→ X the B-improvement with exceptional divisor E. Let
X ′ = Xλ(ν), ν ∈ N (Y,E) a series member, as in (2.16). Then:

(1) X ′ is a rational surface singularity with reduced fundamental cycle
and of multiplicity m.
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(2) The tree T is a limit tree for X ′.

(3) The blow-up tree BT (3) of X ′ is equal to the blow-up tree BT (3)
of X.

Proof. (1) is clear, because X ′ will be a singularity with hyperplane section
the curve Y (m). This condition is equivalent to having reduced fundamental
cycle. For (2) we have to recall the definition of a limit tree from [25],
Definition (1.12). There T is called a limit tree for X ′ if the following
conditions hold.

(0) The set of vertices of T is equal to the set of H of irreducible compo-
nents of the hyperplane section of the singularity.

(1) If {p, r} and {q, r} are edges of T , then

ρ(p, q; r) ≤ ρ(q, r; p)

ρ(p, q; r) ≤ ρ(r, p; q)

(2) For r and s ∈ Cpq, {p, r} ∈ e(T ) one has:

ρ(p, q; r) = ρ(p, s; r).

(3) If p, q, r are not on a chain, and if d is the unique center of p, q, r,
then one has

ρ(p, q; r) ≥ ρ(p, q; d).

We recall here that the function ρ(p, q; r) is the overlap function of X ′, that
is the number of curves in the minimal resolution of X ′ that are common
to the chains from p to r and q to r. Let us verify these conditions. It is
convenient to make a picture; it is more instructive than a formal proof.
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Just some improvement graph

(1) One has

ρ(p, q; r) ≤ min
(
λ(p, r), λ(q, r)

)
ρ(q, r; p) ≥ ν(p, r) + λ(r, p)

ρ(r, p; q) ≥ ν(q, r) + λ(q, r)

So the inequality is satisfied if ν(p, r) and ν(q, r) ≥ λ(p, r) − λ(r, p).
But by the symmetry of the λ-function on the B-model, this is zero,
so it is satisfied for all series members.

(2) This condition is fulfilled for trivial reasons: the function ρ(p, q; r) is
determined by the curves that lie in Yp.

(3) Using (2), we may assume that {p, d}, {q, d} and {r, d} are edges of T .
In this case one has (see picture):

ρ(p, q; r) = λ(d, r) + ν(d, r) +A

ρ(p, q; d) ≤ λ(r, d) +A

for some A that can be positive or negative. Hence it follows that

ρ(p, q; r)− ρ(p, q; d) ≥ λ(d, r)− λ(r, d) + ν(d, r)
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which is ≥ ν(d, r) ≥ 0 by symmetry of λ. Recall that the blow-up tree
of a rational singularity is the tree with nodes corresponding to singu-
larities that occur in the resolution process, see [25]. The statement
about these blow-up trees is evident: the minimal resolution of the
series member is obtained by first deforming the A∞-singularities to
Aν , and then resolving these. This clearly only changes the blow-up
tree by nodes corresponding to singularities of multiplicity 2.

Deformations of Tree Singularities

Associated to each edge {p, q} of a limit tree of a rational surface singularity
with reduced fundamental cycle, there are three elements in T 1 constructed
in [25]:

σ(p, q), τ(p, q) = τ(q, p), σ(q, p).

These 3.(m − 1) elements generate the T 1 and are subject to m relations,
one for each vertex of T : ∑

p∈ν(T )

σ(p, q) = 0.

Let us briefly indicate the method of proof, used in [25]. From the explicit
equations and the choice of a limit tree T for X, one constructs elements in
the normal module

Hom
(
I/I2, OX

)
.

To show that these project onto generators of T 1, one uses the exact
sequence relating X with its general hyperplane section, which is the
curve Y (m):

. . . T 1
X/S

x.−→ T 1
X/S −→ T 1

Y (m) −→ . . . .

Here X −→ S is the slicing of X defined by x ∈ OX . So we can test for
independence by restriction to x = 0, and work inside T 1

Y (m), which is a very
simple space to understand. In this way one can show that the explicitly
constructed elements in fact generate.

For tree singularities one of course has analogous elements, and their
relations can be described in the same way. It turns out that there is a nice
geometrical description for these T 1-generators, and in fact, we first found
these geometrical elements for tree singularities, and then found the result
for arbitrary rational surface singularities with reduced fundamental cycle
by lifting back.
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To define the τ -deformations, we take an edge {p, q}. The corresponding
planes Xp and Xq intersect in a smooth curve Σ{p,q}. So Xp ∪ Xq is
isomorphic to an A∞-singularity.

Lemma 4.2. In the coordinates (1.12)

zpqzqp = 0,

consider the deformation
zpqzqp = f(x)

of this A∞-singularity. If

ordx(f) ≥ s(p, q) := max
r,s

(
ρ(r, p; q), ρ(s, q; p)

)
,

then all the curves Σrp,Σsq; {r, p}, {s, q} ∈ e(T ) lift over this deformation.

Proof. Let y = zpq, z = zqp. The A∞ singularity is described by yz = 0 in
coordinates x, y, z. A smooth curve in the x, z plane transverse to x = 0 can
be taken as defined by the ideal

(
z, y−g(x)

)
. If we deform the A∞ and lift

the curve, then after coordinate transformation we may in fact suppose that
the curve is constant. Hence we must have (y + ε.α).z + ε.β.

(
y − g(x)

)
=

yz + ε.f , hence modulo (y, z) we have that f ∈ (g). From this the lemma
follows.

One now can define elements

τ(p, q) ∈ T 1
X

in the following way: deform the A∞-singularity Xp∪Xq to As(p,q)−1, where

s(p, q) := max
r,s

(
ρ(r, p; q), ρ(s, q; p)

)
.

Lemma 4.2 tells us that we can lift all the curves over this deformation.
Now take such a lift, and glue back all the planes to these curves. In this
way one gets a deformation of the tree singularity X. By construction,
supp

(
OX .τ(p, q)

)
= Σ{p,q}. For each element xn.τ(p, q) one has a one-

parameter deformation, that on the level of equations is characterized by:

zpqzqp = λ.xn+s(p,q).

(We note that this description fits with formula (3.10) of [25] for the τ -
generators.) These τ -deformations are related to the series deformations in



268 D. van Straten

the following way: as mentioned before, deforming on the (B)-improvement
from A∞ to Aν produces a chain of length λ(p, q) + ν(p, q) + λ(p, q) =
2.s(p, q) + ν(p, q). This means that the corresponding T 1-element corre-
sponds to

xs(p,q)+ν(p,q)+1.τ(p, q).

So one sees that the series deformations are contained in the space spanned
by the τ ’s, and form in there a space of finite codimension. Note also that
it follows from [25] that the data (T, φ,f) (see (1.13)) describe a rational
surface singularity with reduced fundamental cycle exactly if ordx(fpq) ≥
s(p, q). This gives an alternative way of thinking about the τ -deformations.

Apart from these series deformations, there is for each (p, q) ∈ o(T )
another sort of deformation, that is geometrically even easier to understand
than the τ ’s:

σ(q, p) : Move the curve Σqp in the plane Xp.

Shifting Σqp in Xp

These σ’s can also be seen as deformations of the decoration:

σ(q, p) : aqp �−→ aqp + ε; φ(r, q; p) �−→ φ(r, q; p)− ε.

From the interpretation as shiftings of the curves, it now becomes obvious
that one has the relations ∑

p∈ν(T )

σ(p, q) = 0.
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These just express the fact that shifting in a given plane Xp all the curves
Σqp by the same amount gives a trivial deformation of the tree singularity.
It is also clear that the shift deformations are unobstructed among each
other.

Obstruction Spaces For Tree Singularities

The generators for T 1 had a natural interpretation in terms of the edges of T .
The generators for the obstruction space T 2 have a nice simple description
in terms of the . . . non-edges of T ! to be more precise, there are elements

Ω(p, q) ∈ T 2
X

for each ordered pair (p, q) /∈ o(T ). It is easy to see that the number of such
oriented non-edges is

m(m− 1)− 2(m− 1) = (m− 1)(m− 2)

Furthermore, for each edge {p, q} ∈ e(T ) we have a linear relation between
the Ω’s: ∑

(p,r;q)∈c(T )

Ω(p, r) +
∑

(s,q;p)∈c(T )

Ω(s, q).

By [11], the number of generators of T 2 is (m− 1)(m− 3), which is indeed
the same as (m− 1)(m− 2)− (m− 1).

Let us quickly describe these elements. Recall that T 2 is by definition

T 2
X = Hom(R/R0,OX)/Hom(F ,OX)

where

0 −→ R −→ F −→ O −→ OX −→ 0

is a presentation of OX as module over the ambient space. F is the free
module on a set of generators of the ideal of X, R the module of relations
between them, and R0 the sub-module of the Koszul-relations. In our case
O := C{x, y1, . . . , ym}, and equations are provided by (1.12). It is useful to
use the notation of the canonical equations, as explained in (1.13). So we
write zrp = zr′q in case that r′ ∈ Crq, etc. the equations are then simply
written as zpqzqp = 0, p 
= q ∈ v(t), and we will use the symbol [pq] to denote
the corresponding elements in F . The module of relations is generated by
the symbols

[p, q; r] := zrp[qr]− zrq[pr] + φ(p, q; r)[pq].
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A T 2-element is represented by a homomorphism R −→ OX . Consider the
homomorphism

Ψ(p, q) :=
∑

a|p∈Cqa

zqa[qa]
∗.

Here [qa]∗ ∈ F denotes the corresponding element in the dual basis.

A straightforward calculation shows the following:

Ψ(p, q)
(
[r, s; t]

)
= 0 unless t = q and the points p, q, r and s lie on

a chain in T with r or s between p and q. In that case one has:
Ψ(p, q)

(
[r, s; t]

)
= ±zqrzqs, (+ if s ∈ Cpq, − if r ∈ Cpq).

But note that if r ∈ Cpq, then

zqrzqs =
(
zsr + φ(q, s; r)

)
.zqs = φ(q, s; r).zqs

because of the equations. This means that the values of the homomorphism
Ψ(p, q) are divisible by some power of x. The power is

ρ(p, q) := min
r∈Cpq,r �=p,q

(
ρ(p, q; r)

)
,

the minimum vanishing order of φ-functions of corners “belonging to the
chain from p to q”. Now choose for each (p, q) an r such that ρ(p, q; r) =
ρ(p, q), and define homomorphism

Ω(p, q) := [
(
1/φ(p, q; r)

)
Ψ(p, q)]

([−] = class of in the T 2). Whereas the class of the Ψ’s are trivial in the T 2,
this is no longer true for the Ω’s; in fact they form a system of generators for
T 2 and this leads to a very beautiful geometrical description of the structure
of this module.

The fact that (p, q) is not an edge of T means that the corresponding
planes Xp and Xq intersect in a fat point. By an easy explicit computation,
one can check that the ideal of this intersection Ipq = (zrs|r ∈ Csp ∪
Csq) annihilates the element Ω(p, q) and so the submodule OX .Ω(p, q) of
the T 2 generated Ω(p, q) is supported on the fat point Xp ∩ Xq. This is
analoguous to the situation with the generators σ(p, q), τ(p, q) of the T 1

that are supported on the intersection curve Xp ∩Xq for edges (p, q) of T .

For a corner (p, q; r) ∈ c(T ), there is only one φ on the chain between
p and q, and it is easy to see the aforementioned linear relations between
then, that arise from an edge.
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One can show with the same hyperplane section trick that the Ω’s form
a generating set for the T 2. But the above explicit description of T 2

annihilating elements will give us an upper bound for the dimension T 2

of the form dim(T 2
X) ≤ N

(
(T, ρ)

)
, where N

(
(T, ρ)

)
is a number that only

depends on the discrete data of the limit tree.

In general it is much easier to find lower bounds for the dimension
of T 2. for this one has to exhibit the fact that the X under consideration
is complicated. One can do this by finding hyperplane sections with high
smoothing codimension, or by finding a deformation to a singularity with
many singularities. In [25] we proved (theorem 2.13)):

Theorem. Let X be a rational surface singularity of multiplicity m with
reduced fundamental cycle. Let X1, X2, . . . , Xr be the singular points of the
first blow up X̂ of X. Then there exists a one-parameter deformation over
the Artin-component, such that for s 
= 0 the fibre Xs has as singularities
X1, . . . , Xr, together with one singularity, isomorphic to the cone over the
rational normal curve of degree (−m).

By an application of the semi-continuity of dimT 2
X one gets

dimT 2
X ≥ (m− 1)(m− 3) + dimT 2

X̂
,

and so
dimT 2 ≥ N(Γ),

where N(Γ) is a number that is easily determined from the resolution graph
of X by iteration of the inequality.

In fact, the above theorem is also true for rational surface singularities
whose fundamental cycle is reduced except possibly at the (−2) curves.
This follows from Laufer’s theory of deformations over the Artin-component
([31]), (3.7); one takes as roots the fundamental cycle Z, together with the
unions of all curves Ei such that Ei.Z = 0, and it is well conceivable that
it is true for all rational surface singularities. But rational surfaces with
reduced fundamental cycle, and also the tree singularities, have the special
property that the above inequalities in fact are equalities. Basically this
follows from

N(Γ) = N
(
(T, ρ)

)
,

a purely combinatorial fact. The proof is given in [25], (3.27). In terms of
the tree the idea is simple: the Ω(p, q) live on the fat point, and after each
blow-up, the length of this scheme drops by one. The T 2 element lives so
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long, until a further blow up will separate the planes. In this way the blow-
up formula for T 2 looks very natural and obvious. Note that because the
blow-up tree BT (3) of X and any series member X ′ of the (B)-model are
the same, one has stability of T 2.

dim (T 2
X) = dim (T 2

X′).

Base Spaces And Chain Equations

We now give a description of the “base space” of a tree singularity. These are
completely analogous to the equations for the rational surface singularities
with reduced fundamental cycle. So let X be a tree singularity, or a rational
surface singularity, described by the data (T, φ,f) as described in (1.12),
(1.13). We describe Def (X)(S), for any base S as follows.

Let for each {p, q} ∈ e(T ) and for each (p, q; r) ∈ c(T ) be given functions

Fpq and Ψ(p, q; r) ∈ S{x} := S ⊗C C{x}

restricting to fpq and φ(p, q; r) respectively. As we have seen, the F ’s
correspond to series and the Ψ to shift deformations. The F ’s and Ψ’s
are heavily obstructed against each other. In fact, a reinterpretation of [25],
(4.9) is:

Theorem 4.3. The system (T,Ψ, F ) describes a flat deformation over S if
and only if for each oriented chain

p0, p1, p2, . . . , pk−1, pk ; {pi, pi+1} ∈ e(T )

the following continued fraction “exists as power series in x”:

F1

Ψ1 +
F2

Ψ2 +
F3

. . .Ψk−1 +
Fk
Ψk

.

Here Fi := Fpi,pi+1 and Ψi := Ψ(pi−1,pi+1;pi).
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Remark 4.4. What happens in practice is that one has some arbitrary
deformation Ψ, F given over some power series ring R := C{a} = C{a1, a2,
. . .}. Each chain gives rise to some ideal in C{a}, as follows: every time
we have to make a division A/B in the continued fraction, we consider
Weierstraß division with remainder:

A = Q.B +R

and then equate to zero the coefficients of the x powers in R. In this way,
every chain c defines a unique ideal J(c) in R, such that the continued
fraction exists over R/J(c). Note that c1 ⊂ c2 implies that J(c1) ⊂ J(c2).
so the ideals are build up inductively, starting from the corners (p, q; r). We
have seen that the obstruction space T 2

X was generated by certain elements

Ω(p, q), p, q /∈ e(T ).

Of course, this is no coincidence. It was shown in [25] that the different
coefficients of remainders that have to be equated to zero exactly correspond
to the elements of T 2. As cyclic quotients have limit trees that are linear
chains, and a component structure that is directly related to properties of
continued fractions, [13], it is very tempting to try to relate these two types
of fractions in some direct way.

The Case Of A Star

Let us analyze further the simplest tree singularities, to know those for
which the tree is a star. I.e., there is one central plane Xc, and all other
planes intersect Xc in a curve. Example (1.10) is of this type. Let us denote
the other planes by Xi, Xj , etc and introduce the short-hand notation
Σi := Σi,c, Fi := Fi,c, Ψ(i, j) := Ψ(i, j; c), etc. So the situation is that we
have a bunch of curves Σi in the central plane, and planes Xi glued to it.
Note that for a star the only non-trivial chains are the corners (i, j; c). So
the chain equations become simply:

Ψ(i, j) divides Fi, ∀ i, j.

These conditions have a very simple geometrical interpretation in terms of
the curves Σi. As the curve Σi is described by the equation y = aic, the
x-coordinates of the intersection points of Σi and Σj are precisely the roots
of the function Ψ(i, j). If we consider the function Fi as a function on Σi,
then this condition just means

(Σi.Σj) ⊂ (Fi), ∀i, j.
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Here (Fi) denotes the sub-scheme of zero’s of the function Fi. Everything
now can be understood in terms of these curves and points on these curves.
A versal deformation can be described as follows. Let S := S(F1)×· · · (Fk)×
S(Σ), where S(Fi) = unfolding space of Fi ≈ Cord(Fi) and S(Σ) := δ-
constant stratum in the semi-universal deformation of Σ = ∪i(Σi). so this
is a smooth space. Now look in S for the stratum Λ ⊂ S over which the
condition holds.

Pictures And Components

Due to the geometrical nature of the condition one can in the simplest cases
understand the component of Λ without any computations. We give some
examples.

Example 4.5. We take as a first example the famous Pinkham example,
the cone over the (−4), [41]. By (2.19), we can see it as the beginning of a
three index series, degenerating into the limit that was described in (1.10).

Pinkham’s example

Example 4.6. In a similar way we can see the (−5) as the beginning of
a four index series, converging to the tree singularity corresponding to the
configuration with four lines in a plane.
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The (−5)-series

We define a picture (of (Σ,f)) to be a pair (Σs,f s) for some s ∈ Λ such
that

(1) Σs consists of pairwise transverse intersecting curves.

(2) The zero’s of each fi,s are all simple.

It is more or less clear that the combinatorially different pictures cor-
respond to the components of Λ. This also makes it clear that in general
there are many components, as long as we take ordx(fi) big enough, that
is, high-up in the series: each stratum in the δ-constant deformation of Σ
gives a new component. In fact, one can see from the description of Λ that

ordx(fi) ≥
∑
j �=i

ρ(i, j)

is sufficient for base space stability. Here we clearly see that in general T 2

become stable much earlier than the base space itself. For details we refer
to the paper [26].
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Homology Of The Milnor Fibre

There is a nice simple description of the homology of the Milnor fibre of
a series member over the smoothing component corresponding to given a
picture. To describe this, we need some notation associated to a picture.

Let P denote the set of distinct points of the picture. So it consists of
the points fi,s = 0 on the branch Σi. Consider the following free Z-modules

P :=
⊕
p∈P

Z.p

L :=
⊕
i

Z.Σi

There is a natural map

I : P −→ L p �−→
∑

{i|p∈Σi}
Σi,

mapping each point to the formal sum of the branches containing the point.
Let Xs be the Milnor fibre over the component of Λ corresponding to the
given picture. Then one has:

Theorem 4.7. Let X ′ be a rational surface singularity with reduced fun-
damental cycle described by the data (T, φ,f), where the tree T is a simple
star. Let M be its Milnor fibre over a smoothing component corresponding
to a picture with incidence map I. Then one has:

H1(M) = Coker (I) and H2(Xs) = Ker (I).

Proof. (Sketch, for details see [26].) Associated to X ′ there is a tree
singularity X with data (T, φ). First we have to take an appropriate small
ball, and intersect X with this ball. The space we obtain is topologically a
ball D in the central plane, to which we glue some other 4-disc.

We are given a picture as described above. So we can find a one-
parameter deformation Xs −→ S of X, with data (ΣS ,fS), such that for
s ∈ S − {0} (Σi,s, fi,s) is a picture in the above sense. We can associate
to this a two-parameter deformation of X: first use the family ΣS to shift
the curves in the appropriate positions. So this is described by the data
(T, φS , 0). Then use t.fis to smooth out the singularities of the spaces Xs.
In other words, the two-parameter deformation of X is given by the data
(T, φS , t.fS), t ∈ T , over S × T .
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To see clearly what happens it is convenient to blow up D in all the
point P. We call this blown-up disc D̃. Its is homotopy equivalent to a
bouquet of spheres. On D̃ we have the strict transform Σ̃ of the curve Σ.
Because all the curves were supposed to intersect transversely, Σ̃ consists
of a collection of disjoint curves, each isomorphic to a 2-disc. Now glue
the planes back to D̃. Transverse to each point of Σ̃ this space has an
A1-singularity. For the triangle picture of (4.5) it looks something like:

The Milnor fibre Xs is obtained from this space by smoothing out
simultaneously these singularities. (This corresponds to deforming A∞
into A−1.) By contracting the discs that were glued in the direction of
the central disc, we see that the Milnor fibre is noting but D̃∗, the space
obtained from D̃ by removing s small tubular neighbourhood T̃ of Σ̃.

Smoothing out and contracting

For the above example it now looks like:
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Cylinders around the curves removed

Now it is easy to compute the homology of the Milnor fibre using the
Mayer–Vietoris sequence. We have D̃∗ ∩ T̃ = ∪∂T̃i, the union of small
cylinders around the Σ̃. The sequence now reads:

. . . H2(D̃
∗ ∩ T̃ ) −→ H2(D̃

∗)⊕H2(T̃ ) −→ H2(D̃) −→ H1(D̃
∗ ∩ T̃ ) . . .

which reduces to

0 −→ H2(D̃
∗) −→ H2(D̃) −→ H1(D̃

∗ ∩ T̃ ) −→ H1(D̃
∗) −→ 0.

Now, H2(D̃) = P and H1(D̃
∗ ∩ T̃ ) = L, where this last isomorphism is set

up by mapping the cycle γi that runs around Σi in the positive direction,
to the generator Σi of the module L. From the geometrical description of
the boundary map in the Mayer–Vietoris sequence we get that indeed the
resulting map P −→ L is given by the incidence matrix.

Remark 4.8. The picture belonging to the small component of Pinkham’s
example consists of a triangle, see example 4.5. Hence we get as incidence
matrix: ⎛⎝0 1 1

1 0 1
1 1 0

⎞⎠ .
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So we see coker (I) = Z/2, ker (I) = 0. For the Artin-component one gets
as matrix: ⎛⎝1 1 0 0

1 0 1 0
1 0 0 1

⎞⎠ .

So here coker (I) = 0, ker (I) = Z.

Remark 4.9. The onset of stability can be observed very nicely in terms of
the points and curves. The set of points P of a picture decomposes naturally
into two pieces: the imprisoned points ∪Σi∩Σj and the complementary set
of free points. If on each curve there is at least one free point, then H1 = 0.
From this point on, the Milnor fibre in the series changes only by wedging it
with some two-spheres, and so has become stable. The condition for having
at least one free point on each branch is that

ordx(fi) > ρ(i) :=
∑
j �=i

ρ(i, j).

Note that this point is also exactly the point where the base space itself
stabilizes! I do not know whether this relation between base spaces stability
and Milnor fibre stability has a more general scope, but it is very well
possible. On the other extreme, pictures with the same number of points
as curves give rise to smoothings with μ = 0, because a priori we know that
the map I must be of maximal rank, as the cokernel must be torsion.

Appendix

We review some basics of deformation theory. We will be very sketchy and
this is only meant to be a refresher. For more details we refer to the original
literature, like [1], [7], [8], [10], [15], [16], [19], [20], [29], [35], [45], [46], [48].
Let X be any germ of an analytic space.

The Deformation Functor

A deformation of X over a germ (S, 0) is pull-back diagram

X ↪→ X
↓ ↓
{0} ↪→ S
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where X −→ S is a flat map. There is an obvious notion of isomorphism
between deformations over the same base S.

The deformation functor of X, Def (X), is the functor

Def (X) : C −→ Set

A �−→
{
Deformations of X over Spec (A)

}
/ Isomorphism.

Here C is the category of Artinian C-algebras and Set is the category of
sets. The category C sits naturally in the category Can of local analytic
C-algebras, which in turn sits in Ĉ, the formal C-algebras. Our functor in
fact is the restriction of a functor defined on these bigger categories, but we
will not introduce extra notation to distinguish these functors.

Note the following easy application of the Artin approximation theorem:

Proposition 4.10 (see also [10], (3.1.3.4)). Let X be any germ of an
analytic space and let ξ̂ ∈ Def (X)

(
C[[s]]

)
a formal deformation. Then

for all n ∈ N there exists a deformation ξ ∈ Def (X)(C{s}) such that the
restrictions of ξ̂ and ξ over C[[s]]/(sn) = C{s}/(sn) are the same.

Proof. Let X ⊂ CN , and let O = O(CN ,0) = C{x1, x2, . . . , xN}. Let a
presentation of OX be given as:

Oβ ρ−→ Oα φ−→ O −→ OX −→ 0.

A formal deformation ξ is given by a 1×α matrix f and an α× β matrix r
over the ring O[[s]] := C[[s]]⊗C O that satisfy:

1) fr = 0 and 2) φ(−) = f(s = 0,−), ρ(−) = r(s = 0,−).
Now consider the ring O{s}[F,R] := C{s, x1, x2, . . . , xn}[F,R], where

F = (F1, . . . , Fα), R = (. . . , Ri,j , . . .). In here we have the ideal generated
by the components of the matrix F ·R. The formal deformation ξ gives us a
solution (f, r) ∈ O[[s]][F,R]. By the Artin approximation theorem one now
obtains for every n ∈ N a solution (f̃ , r̃) in the ring O{s}[F,R] such that
f̃ − f = 0 modulo mn and r̃− r = 0 modulo mn, i.e. we have a convergent
deformation of X approximating the given formal one.

Functors of Artin Rings

We study functors F : C −→ Set. Any R ∈ ob(C) gives us a functor hR :
C −→ Set via A �−→ Hom(R,A). There is a tautological isomorphism

F (R)
≈−→ Hom(hR, F ).
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In particular, any couple R =
(
R, ξ ∈ F (R)

)
gives a map

φR : hR −→ F.

If there is a couple R such that φR is an isomorphism, then one says that
F is (pro) representable. This is usually a much to strong condition on the
functor F .

Definition 4.11. A functor F : C −→ Set is connected iff F (C) = {.}.
A functor is called semi-homogeneous if the following two “Schlessinger
conditions” are satisfied:

If we have a diagram

A′′

↓
A′ −→ A

then the canonical map F (A′ ×A A′′) −→ F (A′)×F (A) F (A′′) is

H.1) surjective if A′′ −→ A is a small surjection;

H.2) bijective if A = C and A′′ = C[ε].

Here C[ε] := C[ε]/(ε2) and a small surjection is a map α : A′′ −→ A such
that ker (α).mA′′ = 0.

For such a functor the tangent space T 1
F := F

(
C[ε]
)
acquires in a natural

way the structure of a C-vectorspace.

Definition 4.12. A transformation of functors F −→ G is called smooth
if for all small surjections, (hence for all surjections) B −→ A the induced
map

F (B) −→ F (A)×G(A) G(B)

is surjective.

If a transformation φ is smooth, and induces an isomorphism T 1
F −→ T 1

G,
then φ is called minimal smooth. A functor F is called smooth, if the final
transformation F −→ hC is smooth. A transformation hS −→ hR is smooth
if and only if S = R[[x]], the composition of smooth transformations is
again smooth, the pull-back of a smooth transformation over an arbitrary
transformation is again smooth, etc. So smooth maps are surjections in a
very strong sense.
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Schlessinger’s theorem: If F is a connected semi-homogeneous functor
then there exists a minimal smooth transformation:

φR : hR −→ F

if and only if:

H.3) T 1
F is finite dimensional.

Under these circumstances one says that R is a hull for F .

Associated to a mapX
f−→ Y , one can consider six deformation functors:

Def (X
f−→ Y ), the deformations of X, Y and f simultaneously, Def (X/Y ),

deformations of X, f but keeping Y fixed, Def (X \Y ), deformations of Y, f ,
but keeping X fixed, Def (f), deformations only of f , keeping both X and
Y fixed. Apart from these one also has Def (X) and Def (Y ). There are six
cotangent complexes associated to these functors and their homology and
cohomology groups sit in various exact sequence, described in detail in the
thesis of R. Buchweitz, [10].

In case that X is not a germ, but a global space, there are global T i
X

and local T i
X sheaves, related by a usual local-to-global spectral sequence:

Ep,q
2 = Hp(X, T q)⇒ T p+q

X .

The Base Space of a Limit

We have seen that the base space of a semi-universal deformation of a
singularity X appears formally as

BX = Ob−1(0)

for the obstruction map

Ob : T 1
X −→ T 2

X .

As for a limit we have dim(T 1
X) = ∞, so the base space of the semi-

universal deformation should be infinite dimensional. Working with infinite
dimensional spaces causes some inconveniences. There are at least three
different attitudes towards these problems possible.
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(1) Try to develop a honest analytic theory in infinite dimensions.

In principle, Hausers approach is just achieving this. He uses Banach-
analytic methods to construct the base space of a semi-universal de-
formation for isolated singularities, and his construction works also
in the case the T 1 is not finite dimensional. It seems that in the im-
portant case that T 2 is finite dimensional, one can use the essentially
simpler theory of Mazet [33] of analytic sets of finite definition (i.e. fi-
nite number of equations, in infinite number of variables). This would
give already quite strong structural statements about the base spaces
(finite number of components, etc, see [33]).

(2) Work formally in infinite number of variables.

This is the approach taken in the book of Laudal [29].

(3) Work only with the functor. A functor that satisfies the three Sch-
lessinger conditions has a hull, so “behaves like a finite dimensional
space”. If we forget about the third Schlessinger condition, we arrive
at the notion of a semi-homogeneous functor and these behave more
or less as spaces infinite dimension.

We will be very lazy here, and work with the functor approach (3),
although a complete development of (1) seems very desirable.
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[10] R.-O. Buchweitz, Contributions à la Théorie des Singularités, Thesis, Université
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[16] H. Grauert, Über die Deformationen isolierter Singularitäten analytischer Mengen,
Inv. Math., 15 (1972), 171–198.

[17] G.-M. Greuel, On deformations of curves and a formula of Deligne, in: “Algebraic
Geometry”, Proc., La Rabida 1981, SLNM 961, Springer, Berlin, (1983).

[18] H. Grauert and R. Remmert, Analytische Stellenalgebren, Grundlehren d. math.
Wissens, Bd. 176, Springer, Berlin, (1971).

[19] H. Hauser, La Construction de la Déformation semi-universelle d’un germe de
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